期刊文献+
共找到142,269篇文章
< 1 2 250 >
每页显示 20 50 100
Characteristics of metals in the aerosols of Zhongshan Station,Antarctica
1
作者 汪建君 陈立奇 +1 位作者 杨绪林 张远辉 《Chinese Journal of Polar Science》 2010年第1期46-59,共14页
Instrumental neutron activation analysis(INAA) was applied to analyze the bulk,high-volume aerosol samples,collected at Zhongshan Station in the Eastern Antarctica,during 1998-2001,to study the chemical species..A g... Instrumental neutron activation analysis(INAA) was applied to analyze the bulk,high-volume aerosol samples,collected at Zhongshan Station in the Eastern Antarctica,during 1998-2001,to study the chemical species..A graphical technique was applied to the INAA data.Results showed that Na,Cl,Mg,Ca,Sr,Br,I,Sr and Rb were marine elements while Al,Sc,Fe and Mn were crustal elements.Compared to marine and crustal elements,five elements(Se、Co、Sb、Zn、Cr) were highly abundant in the aerosols collected at Zhongshan station,which indicated that they might come from the petroleum burning,heating and equipment operation.The presence of pollutant elements suggested that human activities have affected the local environments in Antarctica. 展开更多
关键词 aerosol ANTARCTICA anthropogenic activities heavy metals.
下载PDF
Preliminary comparison of trace metals in coastal aerosols between Qingdao and Liverpool
2
作者 刘昌岭 张经 Roy CHESTER 《Chinese Journal of Oceanology and Limnology》 SCIE CAS CSCD 2008年第2期203-214,共12页
Aerosol samples were collected at two coastal suburban stations, Qingdao (China) in 1995-1996 and Liverpool (U.K.) in 1995, respectively. The samples were analyzed to determine the concentrations of trace metals ... Aerosol samples were collected at two coastal suburban stations, Qingdao (China) in 1995-1996 and Liverpool (U.K.) in 1995, respectively. The samples were analyzed to determine the concentrations of trace metals (Cr, Zn, Cu, Co, Ni, Pb, V, and Cd) as well as A1, Fe and Mn. Data were examined to understand the difference of trace metals in aerosols between coastal zones downwind the developing area (near the Yellow Sea) and developed region (near the Irish Sea). The results show that most elements at Qingdao have levels 4-5 times higher than those at Liverpool, particularly for the crust-dominated elements (e.g. Al, Fe and Mn). Moreover, the aerosol composition at Qingdao is higher in spring than in summer, underlying the influence of westerlies and local emissions in combination, whereas seasonal change of aerosol composition is not significant at Liverpool. The enrichment factors for the crustal source elements (EFcrust) at Liverpool are much higher than those at Qingdao. The contributions from the pollutant source (Rp) for some trace metals like Cu, Pb, Zn and Cd are 〉90% at Qingdao and Liverpool, suggesting overwhelming anthropogenic contributions to these metals. The contributions from crustal source (Re) for trace metals tend to increase with higher aerosol levels and Al concentration at Qingdao, indicating a good correlation between the crust-dominated component and the air mass. At Liverpool, the Rc values for trace metals are positively correlated with Al concentrations instead of with aerosol mass, suggesting that Al in aerosols represents the crustal component even though the aerosols come from different sources. 展开更多
关键词 aerosolS trace metals Qingdao the Yellow Sea coast LIVERPOOL the Irish Sea coast
下载PDF
Characteristics of trace metals in marine aerosols and their source identification over the Southern Ocean 被引量:3
3
作者 ZHAO Shuhui CHEN Liqi LIN Hongmei 《Advances in Polar Science》 2015年第3期203-214,共12页
Atmospheric trace metals (Cu, Zn, Cd, Pb, Fe, V, and Cr), As, A1 and Na in marine aerosols were studied over the Southern Ocean during the 28th Chinese National Antarctic Research Expedition. Fe was the most abundan... Atmospheric trace metals (Cu, Zn, Cd, Pb, Fe, V, and Cr), As, A1 and Na in marine aerosols were studied over the Southern Ocean during the 28th Chinese National Antarctic Research Expedition. Fe was the most abundant of the analyzed trace metals, with an average concentration of 28.824 ng.m3. V and Zn concentrations were also high, and their average concentrations were 5.541 ng.m^3 and 2.584 ng.m^-3, respectively. Although sea spray significantly influenced the marine aerosol particles measured (Na had the highest concentrations of the analyzed elements, with an average concentration of 2.65 μg.m^-3), multivariate analyses (enrichment factor and principal components analysis) indicated that most of the elements were not associated with oceanic sources. Over the Southern Ocean, Fe, Cd, As, AI and Cr in the aerosols mainly originated from crustal sources, while Cu, Pb, V and Zn originated from crustal sources and anthropogenic emissions. The enrichment factors (EFcrust) for most elements (Fe, Al, As, Cr, Cd, Cu and V) were much lower in the northern latitudes, indicating that when the sampling occurred closer to land the concentrations of these elements in aerosols were strongly affected by terrestrial crustal sources. 展开更多
关键词 aerosol trace element multivariate analysis Southern Ocean MARINE
下载PDF
CHEMICAL CHARACTERISTICS OF AEROSOLS IN THE KUROSHIO AREA——II.CHEMICAL FORMS AND SIZE DISTRIBUTIONS OF TRACE METALS
4
作者 陈立奇 余群 +1 位作者 杨绪林 汤荣坤 《Chinese Journal of Oceanology and Limnology》 SCIE CAS CSCD 1993年第4期351-359,共9页
Aerosol samples were collected with a Sierrer Model 235 cascade impactor in the marine atmosphere over the Kuroshio area in consecutive four seasons from 1987 to 1988. Na, G, Al, V, and water soluble and acid soluble ... Aerosol samples were collected with a Sierrer Model 235 cascade impactor in the marine atmosphere over the Kuroshio area in consecutive four seasons from 1987 to 1988. Na, G, Al, V, and water soluble and acid soluble Mn, Fe, Pb, Cu, V, Cd were determined by neutron activation analysis and atomic absorption spectrophotometry, respectively. Seawater source chemical species in the aerosols appeared in high content in large over 3.6um diameter particles, and crustal source vanadium appeared in 3.6um diameter particles, but pollution source vanadium appeared in less than 0.52um diameter particles. Trace metals in the aerosols mostly had the highest concentration of water soluble metals on fine particles, and acid soluble metals on large particles. The concentrations of trace metals in the aerosols were higher in autumn and winter, lower in spring and summer. 展开更多
关键词 metalS chemical FORMS size DISTRIBUTIONS aerosols. KUROSHIO
下载PDF
Simulation of the Ecosystem Productivity Responses to Aerosol Diffuse Radiation Fertilization Effects over the Pan-Arctic during 2001–19 被引量:1
5
作者 Zhiding ZHANG Xu YUE +3 位作者 Hao ZHOU Jun ZHU Yadong LEI Chenguang TIAN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第1期84-96,共13页
The pan-Arctic is confronted with air pollution transported from lower latitudes.Observations have shown that aerosols help increase plant photosynthesis through the diffuse radiation fertilization effects(DRFEs).Whil... The pan-Arctic is confronted with air pollution transported from lower latitudes.Observations have shown that aerosols help increase plant photosynthesis through the diffuse radiation fertilization effects(DRFEs).While such DRFEs have been explored at low to middle latitudes,the aerosol impacts on pan-Arctic ecosystems and the contributions by anthropogenic and natural emission sources remain less quantified.Here,we perform regional simulations at 0.2o×0.2ousing a well-validated vegetation model(Yale Interactive terrestrial Biosphere,YIBs)in combination with multi-source of observations to quantify the impacts of aerosol DRFEs on the net primary productivity(NPP)in the pan-Arctic during 2001-19.Results show that aerosol DRFEs increase pan-Arctic NPP by 2.19 Pg C(12.8%)yr^(-1)under clear-sky conditions,in which natural and anthropogenic sources contribute to 8.9% and 3.9%,respectively.Under all-sky conditions,such DRFEs are largely dampened by cloud to only 0.26 Pg C(1.24%)yr^(-1),with contributions of 0.65% by natural and 0.59% by anthropogenic species.Natural aerosols cause a positive NPP trend of 0.022% yr^(-1)following the increased fire activities in the pan-Arctic.In contrast,anthropogenic aerosols induce a negative trend of-0.01% yr^(-1)due to reduced emissions from the middle latitudes.Such trends in aerosol DRFEs show a turning point in the year of 2007 with more positive NPP trends by natural aerosols but negative NPP trends by anthropogenic aerosols thereafter.Though affected by modeling uncertainties,this study suggests a likely increasing impact of aerosols on terrestrial ecosystems in the pan-Arctic under global warming. 展开更多
关键词 diffuse radiation fertilization effects anthropogenic aerosols natural aerosols pan-Arctic net primary productivity
下载PDF
From Liquid to Solid‑State Lithium Metal Batteries:Fundamental Issues and Recent Developments 被引量:1
6
作者 Zhao Zhang Wei‑Qiang Han 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第2期68-125,共58页
The widespread adoption of lithium-ion batteries has been driven by the proliferation of portable electronic devices and electric vehicles,which have increasingly stringent energy density requirements.Lithium metal ba... The widespread adoption of lithium-ion batteries has been driven by the proliferation of portable electronic devices and electric vehicles,which have increasingly stringent energy density requirements.Lithium metal batteries(LMBs),with their ultralow reduction potential and high theoretical capacity,are widely regarded as the most promising technical pathway for achieving high energy density batteries.In this review,we provide a comprehensive overview of fundamental issues related to high reactivity and migrated interfaces in LMBs.Furthermore,we propose improved strategies involving interface engineering,3D current collector design,electrolyte optimization,separator modification,application of alloyed anodes,and external field regulation to address these challenges.The utilization of solid-state electrolytes can significantly enhance the safety of LMBs and represents the only viable approach for advancing them.This review also encompasses the variation in fundamental issues and design strategies for the transition from liquid to solid electrolytes.Particularly noteworthy is that the introduction of SSEs will exacerbate differences in electrochemical and mechanical properties at the interface,leading to increased interface inhomogeneity—a critical factor contributing to failure in all-solidstate lithium metal batteries.Based on recent research works,this perspective highlights the current status of research on developing high-performance LMBs. 展开更多
关键词 Lithium metal batteries All-solid-state lithium metal battery Li dendrite Solid electrolyte Interface
下载PDF
Towards advanced zinc anodes by interfacial modification strategies for efficient aqueous zinc metal batteries 被引量:1
7
作者 Changchun Fan Weijia Meng Jiaye Ye 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期79-110,I0003,共33页
Developing sustainable and clean energy sources(e.g.,solar,wind,and tide energy)is essential to achieve the goal of carbon neutrality.Due to the discontinuous and inco nsistent nature of common clean energy sources,hi... Developing sustainable and clean energy sources(e.g.,solar,wind,and tide energy)is essential to achieve the goal of carbon neutrality.Due to the discontinuous and inco nsistent nature of common clean energy sources,high-performance energy storage technologies are a critical part of achieving this target.Aqueous zinc metal batteries(AZMBs)with inherent safety,low cost,and competitive performance are regarded as one of the promising candidates for grid-scale energy storage.However,zinc metal anodes(ZMAs)with irreversible problems of dendrite growth,hydrogen evolution reaction,self-corrosio n,and other side reactions have seriously hindered the development and commercialization of AZMBs.An increasing number of researchers are focusing on the stability of ZMAs,so assessing the effectiveness of existing research strategies is critical to the development of AZMBs.This review aims to provide a comprehensive overview of the fundamentals and challenges of AZMBs.Resea rch strategies for interfacial modification of ZMAs are systematically presented.The features of artificial interfacial coating and in-situ interfacial coating of ZMAs are compared and discussed in detail,as well as the effect of modified interfacial ZMA on the full-battery performance.Finally,perspectives are provided on the problems and challenges of ZMAs.This review is expected to offer a constructive reference for the further development and commercialization of AZMBs. 展开更多
关键词 Aqueous zinc metal batteries Zinc metal anode Interfacial modification Artificial interfacial coating In-situ interfacial coating
下载PDF
Effect of Interface Form on Creep Failure and Life of Dissimilar Metal Welds Involving Nickel-Based Weld Metal and Ferritic Base Metal 被引量:1
8
作者 Xiaogang Li Junfeng Nie +2 位作者 Xin Wang Kejian Li Haiquan Zhang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第1期265-285,共21页
For dissimilar metal welds(DMWs)involving nickel-based weld metal(WM)and ferritic heat resistant steel base metal(BM)in power plants,there must be an interface between WM and BM,and this interface suffers mechanical a... For dissimilar metal welds(DMWs)involving nickel-based weld metal(WM)and ferritic heat resistant steel base metal(BM)in power plants,there must be an interface between WM and BM,and this interface suffers mechanical and microstructure mismatches and is often the rupture location of premature failure.In this study,a new form of WM/BM interface form,namely double Y-type interface was designed for the DMWs.Creep behaviors and life of DMWs containing double Y-type interface and conventional I-type interface were compared by finite element analysis and creep tests,and creep failure mechanisms were investigated by stress-strain analysis and microstructure characterization.By applying double Y-type interface instead of conventional I-type interface,failure location of DMW could be shifted from the WM/ferritic heat-affected zone(HAZ)interface into the ferritic HAZ or even the ferritic BM,and the failure mode change improved the creep life of DMW.The interface premature failure of I-type interface DMW was related to the coupling effect of microstructure degradation,stress and strain concentrations,and oxide notch on the WM/HAZ interface.The creep failure of double Y-type interface DMW was the result of Type IV fracture due to the creep voids and micro-cracks on fine-grain boundaries in HAZ,which was a result of the matrix softening of HAZ and lack of precipitate pinning at fine-grain boundaries.The double Y-type interface form separated the stress and strain concentrations in DMW from the WM/HAZ interface,preventing the trigger effect of oxide notch on interface failure and inhibiting the interfacial microstructure cracking.It is a novel scheme to prolong creep life and enhance reliability of DMW,by means of optimizing the interface form,decoupling the damage factors from WM/HAZ interface,and then changing the failure mechanism and shifting the failure location. 展开更多
关键词 Dissimilar metal weld Nickel-based weld metal Ferritic heat resistant steel INTERFACE Creep strain MICROSTRUCTURE Failure mechanism Creep life
下载PDF
Heavy metal concentrations and Pb isotopic composition in urban and suburban aerosols of Hong Kong and Guangzhou, South China—Evidence of the long-range transport of air contaminants
9
作者 Celine Siu Lan Lee Xiangdong LI +3 位作者 Gan ZHANG Jun LI Aijun DING Tao WANG 《Chinese Journal Of Geochemistry》 EI CAS 2006年第B08期123-124,共2页
关键词 空气污染 重金属 气溶胶 同位素 华南地区
下载PDF
Liquid metal as an efficient protective layer for lithium metal anodes in all-solid-state batteries
10
作者 Shiqiang Zhou Mengrui Li +7 位作者 Peike Wang Lukuan Cheng Lina Chen Yan Huang Boxuan Cao Suzhu Yu Qingju Liu Jun Wei 《Carbon Energy》 SCIE EI CAS CSCD 2024年第7期219-229,共11页
Lithium metal batteries with inorganic solid-state electrolytes have emerged as strong and attractive candidates for electrochemical energy storage devices because of their high-energy content and safety.Nonetheless,i... Lithium metal batteries with inorganic solid-state electrolytes have emerged as strong and attractive candidates for electrochemical energy storage devices because of their high-energy content and safety.Nonetheless,inherent challenges of deleterious lithium dendrite growth and poor interfacial stability hinder their commercial application.Herein,we report a liquid metal-coated lithium metal(LM@Li)anode strategy to improve the contact between lithium metal and a Li6PS5Cl inorganic electrolyte.The LM@Li symmetric cell shows over 1000 h of stable lithium plating/stripping cycles at 2mA cm^(-2) and a significantly higher critical current density of 9.8 mAcm^(-2) at 25°C.In addition,a full battery assembled with a high-capacity composite LiNbO3@-LiNi_(0.7)Co_(0.2)Mn_(0.1)O_(2)(LNO@NCM721)cathode shows stable cycling performance.Experimental and computational results have demonstrated that dendrite growth tolerance and physical contact in solid-state batteries can be reinforced by using LM interlayers for interfacial modification. 展开更多
关键词 all-solid-state batteries interface engineering liquid metals lithium metal anodes
下载PDF
Regulating zinc ion transport behavior and solvated structure towards stable aqueous Zn metal batteries
11
作者 Qiang Ma Aoen Ma +6 位作者 Shanguang Lv Bowen Qin Yali Xu Xianxiang Zeng Wei Ling Yuan Liu Xiongwei Wu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期609-626,I0015,共19页
Aqueous Zn metal batteries(AZMBs)with intrinsic safety,high energy density and low cost have been regarded as promising electrochemical energy storage devices.However,the parasitic reaction on metallic Zn anode and th... Aqueous Zn metal batteries(AZMBs)with intrinsic safety,high energy density and low cost have been regarded as promising electrochemical energy storage devices.However,the parasitic reaction on metallic Zn anode and the incompatibility between electrode and electrolytes lead to the deterioration of electrochemical performance of AZMBs during the cycling.The critical point to achieve the stable cycling of AZMBs is to properly regulate the zinc ion solvated structure and transfer behavior between metallic Zn anode and electrolyte.In recent years,numerous achievements have been made to resolve the formation of Zn dendrite and interface incompatible issues faced by AZMBs via optimizing the sheath structure and transport capability of zinc ions at electrode-electrolyte interface.In this review,the challenges for metallic Zn anode and electrode-electrolyte interface in AZMBs including dendrite formation and interface characteristics are presented.Following the influences of different strategies involving designing advanced electrode structu re,artificial solid electrolyte interphase(SEI)on Zn anode and electrolyte engineering to regulate zinc ion solvated sheath structure and transport behavior are summarized and discussed.Finally,the perspectives for the future development of design strategies for dendrite-free Zn metal anode and long lifespan AZMBs are also given. 展开更多
关键词 aqueous Zn metal batteries Zn metal anode Transport behavior Solvated structure Dendrite-free
下载PDF
Experimental investigation on effective aerosol scavenging using different spray configurations with pre-injection of water mist for Fukushima Daiichi decommissioning
12
作者 Rui-Cong Xu Avadhesh Kumar Sharma +2 位作者 Erdal Ozdemir Shuichiro Miwa Shunichi Suzuki 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第5期154-172,共19页
During the decommissioning of the Fukushima Daiichi nuclear power plant,it is important to consider the retrieval of resolidified debris both in air and underwater configurations.For the subsequent retrieval of debris... During the decommissioning of the Fukushima Daiichi nuclear power plant,it is important to consider the retrieval of resolidified debris both in air and underwater configurations.For the subsequent retrieval of debris from the reactor building,the resolidified debris must be cut into smaller pieces using various cutting methods.During the cutting process,aerosol particles are expected to be generated at the submicron scale.It has been noted that such aerosols sizing within the Greenfield gap(0.1-1μm)are difficult to remove effectively using traditional spraying methods.Therefore,to improve the aerosol removal efficiency of the spray system,a new aerosol agglomeration method was recently proposed,which involves injecting water mist to enlarge the sizes of the aerosol particles before removing them using water sprays.In this study,a series of experiments were performed to clarify the proper spray configurations for effective aerosol scavenging and to improve the performance of the water mist.The experimental results showed that the spray flow rate and droplet characteristics are important factors for the aerosol-scavenging efficiency and performance of the water mist.The results obtained from this study will be helpful for the optimization of the spray system design for effective aerosol scavenging during the decommissioning of the Fukushima Daiichi plant. 展开更多
关键词 Fukushima Daiichi decommissioning aerosol scavenging Multiphase flow Spray system aerosol-mist agglomeration
下载PDF
A Review on Engineering Transition Metal Compound Catalysts to Accelerate the Redox Kinetics of Sulfur Cathodes for Lithium–Sulfur Batteries
13
作者 Liping Chen Guiqiang Cao +8 位作者 Yong Li Guannan Zu Ruixian Duan Yang Bai Kaiyu Xue Yonghong Fu Yunhua Xu Juan Wang Xifei Li 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第5期300-332,共33页
Engineering transition metal compounds(TMCs)catalysts with excellent adsorption-catalytic ability has been one of the most effec-tive strategies to accelerate the redox kinetics of sulfur cathodes.Herein,this review f... Engineering transition metal compounds(TMCs)catalysts with excellent adsorption-catalytic ability has been one of the most effec-tive strategies to accelerate the redox kinetics of sulfur cathodes.Herein,this review focuses on engineering TMCs catalysts by cation doping/anion doping/dual doping,bimetallic/bi-anionic TMCs,and TMCs-based heterostructure composites.It is obvious that introducing cations/anions to TMCs or constructing heterostructure can boost adsorption-catalytic capacity by regulating the electronic structure including energy band,d/p-band center,electron filling,and valence state.Moreover,the elec-tronic structure of doped/dual-ionic TMCs are adjusted by inducing ions with different electronegativity,electron filling,and ion radius,resulting in electron redistribution,bonds reconstruction,induced vacancies due to the electronic interaction and changed crystal structure such as lat-tice spacing and lattice distortion.Different from the aforementioned two strategies,heterostructures are constructed by two types of TMCs with different Fermi energy levels,which causes built-in electric field and electrons transfer through the interface,and induces electron redistribution and arranged local atoms to regulate the electronic structure.Additionally,the lacking studies of the three strategies to comprehensively regulate electronic structure for improving catalytic performance are pointed out.It is believed that this review can guide the design of advanced TMCs catalysts for boosting redox of lithium sulfur batteries. 展开更多
关键词 Lithium–sulfur battery Redox kinetic Transition metal compounds catalyst Multiple metals/anions
下载PDF
Loosely coordinating diluted highly concentrated electrolyte toward -60℃ Li metal batteries
14
作者 Han Zhang Ziqi Zeng +5 位作者 Qiang Wu Xinlan Wang Mingsheng Qin Sheng Lei Shijie Cheng Jia Xie 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期380-387,I0009,共9页
Lithium metal batteries(LMBs) promise energy density over 400 Wh kg^(-1).However,they suffer severe electrochemical performance deterioration at sub-zero temperatures.Such failure behavior highly correlates to inferio... Lithium metal batteries(LMBs) promise energy density over 400 Wh kg^(-1).However,they suffer severe electrochemical performance deterioration at sub-zero temperatures.Such failure behavior highly correlates to inferior lithium metal anode(LMA) compatibility and sluggish Li^(+) desolvation.Here,we demonstrate that cyclopentylmethyl ether(CPME) based diluted high-concentration electrolyte(DHCE)enables-60℃ LMBs operation.By leveraging the loose coordination between Li^(+) and CPME,such developed electrolyte boosts the formation of ion clusters to derive anion-dominant interfacial chemistry for enhancing LMA compatibility and greatly accelerates Li^(+) desolvation kinetics.The resulting electrolyte demonstrates high Coulombic efficiencies(CE),providing over 99.5%,99.1%,98.5% and 95% at 25,-20,-40,and-60℃respectively.The assembled Li-S battery exhibits remarkable cyclic stability in-20,and-40℃ at 0.2 C charging and 0.5 C discharging.Even at-60℃,Li-S cell with this designed electrolyte retains> 70% of the initial capacity over 170 cycles.Besides,lithium metal coin cell and pouch cell with10 mg cm^(-2) high S cathode loading exhibit cycling stability at-20℃.This work offers an opportunity for rational designing electrolytes toward low temperature LMBs. 展开更多
关键词 Lithium metal batteries -60℃operation Lithium metal anode compatibility Li^(+) desolvation kinetics
下载PDF
Arbitrary skin metallization by pencil-writing inspired solid-ink rubbing for advanced energy storage and harvesting
15
作者 Yonghan Zhou Zhongfeng Ji +5 位作者 Wenrui Cai Xuewei He Ruiying Bao Xuewei Fu Wei Yang Yu Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期592-602,I0013,共12页
The development of a durable metallic coating on diverse substrates is both intriguing and challenging,particularly in the research of metal-conductive materials for applications such as batteries,soft electronics,and... The development of a durable metallic coating on diverse substrates is both intriguing and challenging,particularly in the research of metal-conductive materials for applications such as batteries,soft electronics,and beyond.Herein,by learning from the pencil-writing process,a facile solid-ink rubbing technology(SIR-tech)is invented to address the above challenge.The solid-ink is exampled by rational combination of liquid metal and graphite particles.By harnessing the synergistic effects between rubbing and adhesion,controllable metallic skin is successfully formed onto metals,woods,ceramics,and plastics without limitation in size and shape.Moreover,outperforming pure liquid-metal coating,the composite metallic skin by SIR-tech is very robust due to the self-lamination of graphite nanoplate exfoliated by liquid-metal rubbing.The critical factors controlling the structures-properties of the composite metallic skin have been systematically investigated as well.For applications,the SIR-tech is demonstrated to fabricate high-performance composite current collectors for next-generation batteries without traditional metal foils.Meanwhile,advanced skin-electrodes are further demonstrated for stable triboelectricity generation even under temperature fluctuation from-196 to 120℃.This facile and highly-flexible SIR-tech may work as a powerful platform for the studies on functional coatings by liquid metals and beyond. 展开更多
关键词 Microadhesion guided technology Skin metallization by solid-ink rubbing Liquid metal composites Composite current collector Batteries and triboelectric nanogenerators
下载PDF
Improvement of ionic conductivity of solid polymer electrolyte based on Cu-Al bimetallic metal-organic framework fabricated through molecular grafting
16
作者 Liu-bin SONG Tian-yuan LONG +5 位作者 Min-zhi XIAO Min LIU Ting-ting ZHAO Yin-jie KUANG Lin JIANG Zhong-liang XIAO 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第9期2943-2958,共16页
A composite solid electrolyte comprising a Cu-Al bimetallic metal-organic framework(CAB),lithium salt(LiTFSI)and polyethylene oxide(PEO)was fabricated through molecular grafting to enhance the ionic conductivity of th... A composite solid electrolyte comprising a Cu-Al bimetallic metal-organic framework(CAB),lithium salt(LiTFSI)and polyethylene oxide(PEO)was fabricated through molecular grafting to enhance the ionic conductivity of the PEO-based electrolytes.Experimental and molecular dynamics simulation results indicated that the electrolyte with 10 wt.%CAB(PL-CAB-10%)exhibits high ionic conductivity(8.42×10~(-4)S/cm at 60℃),high Li+transference number(0.46),wide electrochemical window(4.91 V),good thermal stability,and outstanding mechanical properties.Furthermore,PL-CAB-10%exhibits excellent cycle stability in both Li-Li symmetric battery and Li/PL-CAB-10%/LiFePO4 asymmetric battery setups.These enhanced performances are primarily attributable to the introduction of the versatile CAB.The abundant metal sites in CAB can react with TFSI~-and PEO through Lewis acid-base interactions,promoting LiTFSI dissociation and improving ionic conductivity.Additionally,regular pores in CAB provide uniformly distributed sites for cation plating during cycling. 展开更多
关键词 polyethylene oxide Cu−Al bimetallic metal-organic framework solid lithium metal battery molecular grafting ionic conductivity
下载PDF
Viability of all-solid-state lithium metal battery coupled with oxide solid-state electrolyte and high-capacity cathode
17
作者 Xingxing Jiao Xieyu Xu +6 位作者 Yongjing Wang Xuyang Wang Yaqi Chen Shizhao Xiong Weiqing Yang Zhongxiao Song Yangyang Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期122-131,共10页
Owing to the utilization of lithium metal as anode with the ultrahigh theoretical capacity density of 3860 mA h g^(-1)and oxide-based ceramic solid-state electrolytes(SE),e.g.,garnet-type Li7La_(3)Zr_(2)O_(12)(LLZO),a... Owing to the utilization of lithium metal as anode with the ultrahigh theoretical capacity density of 3860 mA h g^(-1)and oxide-based ceramic solid-state electrolytes(SE),e.g.,garnet-type Li7La_(3)Zr_(2)O_(12)(LLZO),all-state-state lithium metal batteries(ASLMBs)have been widely accepted as the promising alternatives for providing the satisfactory energy density and safety.However,its applications are still challenged by plenty of technical and scientific issues.In this contribution,the co-sintering temperature at 500℃is proved as a compromise method to fabricate the composite cathode with structural integrity and declined capacity fading of LiNi_(0.5)Co_(0.2)Mn_(0.3)O_(2)(NCM).On the other hand,it tends to form weaker grain boundary(GB)inside polycrystalline LLZO at inadequate sintering temperature for LLZO,which can induce the intergranular failure of SE during the growth of Li filament inside the unavoidable defect on the interface of SE.Therefore,increasing the strength of GB,refining the grain to 0.4μm,and precluding the interfacial defect are suggested to postpone the electro-chemo-mechanical failure of SE with weak GB.Moreover,the advanced sintering techniques to lower the co-sintering temperature for both NCM-LLZO composite cathode and LLZO SE can be posted out to realize the viability of state-of-the-art ASLMBs with higher energy density as well as the guaranteed safety. 展开更多
关键词 All-solid-state lithium metal battery LiNi_(0.5C)o_(0.2)Mn_(0.3)O_(2)-Li7La_(3)Zr_(2)O_(12)composite cathode CO-SINTERING Lithium metal anode Electro-chemo-mechanical failure
下载PDF
Size Distribution of Particulate Matter of Metals in Urban Aerosols, Comarca Lagunera, Mexico
18
作者 Roman Perez Sylvia Miranda +4 位作者 Alfredo Campos Jorge Carrillo Elias Ramirez Gonzalo Garcia Herrera 《Journal of Environmental Science and Engineering(A)》 2012年第11期1260-1266,共7页
This paper has demonstrated that there is great variation in the size range and chemical composition of metalliferous PM (particulate matter) present within Comarca Lagunera, M6xico due to the physiography of the te... This paper has demonstrated that there is great variation in the size range and chemical composition of metalliferous PM (particulate matter) present within Comarca Lagunera, M6xico due to the physiography of the terrain together the intense vehicular traffic, unpaved roads, cement and lime plants, marble quarries, brick plants, and the largest smelter of non-ferrous material in Latin America. Cascade impactor PM samples from six size ranges: 〈 0.49 μm, 0.49-0.9 μm, 0.9-1.5μm, 1.5-3.0 p.m, 3.0-7.2 μm and 7.2-10 μm were collected from inside two stacks within G6mez Palacios and Torreon cities. ICP-AES (inductively coupled plasma-atomic emission spectrometry) analysis on collected Whatman fiberglass filters demonstrates that the PM are matrices mostly constituted of carbonates and silicates with abundant fine metalliferous particles. The metals with the most concentrations averaged over all size ranges were Cu, Fe, Mn, Ni, Pb and Ti. The size distributions of metals detected in this work have been plotted as normalized histogram concentration of each size fraction, the total concentration, and the aerodynamic particle diameter, which is a useful method for comparing the contributions of coarse and fine particles to pollutant concentrations. 展开更多
关键词 Size distribution cascade impactor metalS Comarca Lagunera Mexico ICP-AES.
下载PDF
Templated synthesis of transition metal phosphide electrocatalysts for oxygen and hydrogen evolution reactions 被引量:4
19
作者 Rose Anne Acedera Alicia Theresse Dumlao +4 位作者 DJ Donn Matienzo Maricor Divinagracia Julie Anne del Rosario Paraggua Po-Ya Abel Chuang Joey Ocon 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期646-669,I0014,共25页
Transition metal phosphides(TMPs)have been regarded as alternative hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)catalysts owing to their comparable activity to those of noble metal-based catalysts... Transition metal phosphides(TMPs)have been regarded as alternative hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)catalysts owing to their comparable activity to those of noble metal-based catalysts.TMPs have been produced in various morphologies,including hollow and porous nanostructures,which are features deemed desirable for electrocatalytic materials.Templated synthesis routes are often responsible for such morphologies.This paper reviews the latest advances and existing challenges in the synthesis of TMP-based OER and HER catalysts through templated methods.A comprehensive review of the structure-property-performance of TMP-based HER and OER catalysts prepared using different templates is presented.The discussion proceeds according to application,first by HER and further divided among the types of templates used-from hard templates,sacrificial templates,and soft templates to the emerging dynamic hydrogen bubble template.OER catalysts are then reviewed and grouped according to their morphology.Finally,prospective research directions for the synthesis of hollow and porous TMP-based catalysts,such as improvements on both activity and stability of TMPs,design of environmentally benign templates and processes,and analysis of the reaction mechanism through advanced material characterization techniques and theoretical calculations,are suggested. 展开更多
关键词 OER HER Transition metal phosphide Templated synthesis ELECTROCATALYSTS
下载PDF
Surface Metallization of Glass Fiber(GF)/Polyetheretherketone(PEEK) Composite with Cu Coatings Deposited by Magnetron Sputtering and Electroplating 被引量:1
20
作者 钟利 金凡亚 +2 位作者 朱剑豪 TONG Honghui DAN Min 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第1期213-220,共8页
Surface metallization of glass fiber(GF)/polyetheretherketone(PEEK)[GF/PEEK] is conducted by coating copper using electroplating and magnetron sputtering and the properties are determined by X-ray diffraction(XRD), sc... Surface metallization of glass fiber(GF)/polyetheretherketone(PEEK)[GF/PEEK] is conducted by coating copper using electroplating and magnetron sputtering and the properties are determined by X-ray diffraction(XRD), scanning electron microscopy(SEM), and electron backscatter diffraction(EBSD).The coating bonding strength is assessed by pull-out tests and scribing in accordance with GB/T 9286-1998.The results show that the Cu coating with a thickness of 30 μm deposited on GF/PEEK by magnetron sputtering has lower roughness, finer grain size, higher crystallinity, as well as better macroscopic compressive stress,bonding strength, and electrical conductivity than the Cu coating deposited by electroplating. 展开更多
关键词 surface metallization Cu coating magnetron sputtering ELECTROPLATING
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部