Multi-walled carbon nanotubes (MWCNTs) can act not only as a support for Fe3O4 nanoparticles (NPs) but also as a coworker with synergistic effect, accordingly improving the heterogeneous Fenton-like efficiency of ...Multi-walled carbon nanotubes (MWCNTs) can act not only as a support for Fe3O4 nanoparticles (NPs) but also as a coworker with synergistic effect, accordingly improving the heterogeneous Fenton-like efficiency of Fe3O4 NPs. In this study, Fe3O4 NPs were in situ anchored onto MWCNTs by a moderate co-precipitation method and the as-prepared Fe3O4/MWCNTs nanocomposites were employed as the highly efficient Fenton-like catalysts. The analyses of XRD, FTIR, Raman, FESEM, TEM and HRTEM results indicated the formation of Fe3O4 crystals in Fe3O4/MWCNTs nanocomposites prepared at different conditions and the interaction between Fe3O4 NPs and MWCNTs. Over a wide pH range, the surface of modified MWCNTs possessed negative charges. Based on these results, the possible combination mechanism between Fe3O4 NPs and MWCNTs was discussed and proposed. Moreover, the effects of preparation and catalytic conditions on the Fenton-like catalytic efficiency were investigated in order to gain further insight into the heterogeneous Fenton-like reaction catalyzed by Fe3O4/MWCNTs nanocomposites.展开更多
An idealized tri-material assumption is established to describe the constitutive relationship of mismatched welded joints by considering the influence of heat affected zone(HAZ).The fracture parameters Jand C*are e...An idealized tri-material assumption is established to describe the constitutive relationship of mismatched welded joints by considering the influence of heat affected zone(HAZ).The fracture parameters Jand C*are estimated for mismatched welded joints with HAZ cracks by finite element analysis with ABAQUS.A middle crack tension(M(T))specimen is utilized in the analysis for different material properties and geometries of the weldment.The influence of mechanical property and geometry on the fracture parameters Jand C*of the specimen is discussed for the welded joints with HAZ crack.The results suggest that the HAZ property is a significant factor in the estimation of Jand C*for the mismatched welded joint with HAZ crack.展开更多
The concentric bluff-body jet burner is widely used in industrial combustion systems.This kind of burner often generates a considerably complex recirculation zone behind the bluff body.As a result, the fuel often rema...The concentric bluff-body jet burner is widely used in industrial combustion systems.This kind of burner often generates a considerably complex recirculation zone behind the bluff body.As a result, the fuel often remains in the recirculation zone,achieving stability of flame.This study investigates, by means of experiments,the variations of the aerodynamics as the fluid is injected into a combustion chamber through a double concentric burner with a bluff-body.The observation and measurement of the aerodynamics in our experiment are conducted under a cold flow.The controlled parameters in our experiment are:variations in the blockage ratio of the center bluff body,the cone angle of the bluff body,and the velocity ratio(U_s/U_p)of the secondary jet and primary jet;the injection of helium bubbles into the primary and secondary jets to observe the recirculation zone behind the bluff body;using Tufts for observing the characteristics of corner recirculation zone in a combustion chamber,measuring the average velocity of each point within the aerodynamics by the 5-hole pitot tube;measuring the distribution of static pressure of the combustion chamber walls with a static pressure tap.展开更多
基金This work was financially supported by the Natural Science Foundation of Heilongjiang Province, China (No. E2015065).
文摘Multi-walled carbon nanotubes (MWCNTs) can act not only as a support for Fe3O4 nanoparticles (NPs) but also as a coworker with synergistic effect, accordingly improving the heterogeneous Fenton-like efficiency of Fe3O4 NPs. In this study, Fe3O4 NPs were in situ anchored onto MWCNTs by a moderate co-precipitation method and the as-prepared Fe3O4/MWCNTs nanocomposites were employed as the highly efficient Fenton-like catalysts. The analyses of XRD, FTIR, Raman, FESEM, TEM and HRTEM results indicated the formation of Fe3O4 crystals in Fe3O4/MWCNTs nanocomposites prepared at different conditions and the interaction between Fe3O4 NPs and MWCNTs. Over a wide pH range, the surface of modified MWCNTs possessed negative charges. Based on these results, the possible combination mechanism between Fe3O4 NPs and MWCNTs was discussed and proposed. Moreover, the effects of preparation and catalytic conditions on the Fenton-like catalytic efficiency were investigated in order to gain further insight into the heterogeneous Fenton-like reaction catalyzed by Fe3O4/MWCNTs nanocomposites.
基金Sponsored by National High Technology Research and Development Program of China(2012AA040106)
文摘An idealized tri-material assumption is established to describe the constitutive relationship of mismatched welded joints by considering the influence of heat affected zone(HAZ).The fracture parameters Jand C*are estimated for mismatched welded joints with HAZ cracks by finite element analysis with ABAQUS.A middle crack tension(M(T))specimen is utilized in the analysis for different material properties and geometries of the weldment.The influence of mechanical property and geometry on the fracture parameters Jand C*of the specimen is discussed for the welded joints with HAZ crack.The results suggest that the HAZ property is a significant factor in the estimation of Jand C*for the mismatched welded joint with HAZ crack.
文摘The concentric bluff-body jet burner is widely used in industrial combustion systems.This kind of burner often generates a considerably complex recirculation zone behind the bluff body.As a result, the fuel often remains in the recirculation zone,achieving stability of flame.This study investigates, by means of experiments,the variations of the aerodynamics as the fluid is injected into a combustion chamber through a double concentric burner with a bluff-body.The observation and measurement of the aerodynamics in our experiment are conducted under a cold flow.The controlled parameters in our experiment are:variations in the blockage ratio of the center bluff body,the cone angle of the bluff body,and the velocity ratio(U_s/U_p)of the secondary jet and primary jet;the injection of helium bubbles into the primary and secondary jets to observe the recirculation zone behind the bluff body;using Tufts for observing the characteristics of corner recirculation zone in a combustion chamber,measuring the average velocity of each point within the aerodynamics by the 5-hole pitot tube;measuring the distribution of static pressure of the combustion chamber walls with a static pressure tap.