Substantial reduction in both mortality from and the number of people affected by natural hazards by 2030 are two principal targets that can be measured to assess global progress toward meeting the goals of the Sendai...Substantial reduction in both mortality from and the number of people affected by natural hazards by 2030 are two principal targets that can be measured to assess global progress toward meeting the goals of the Sendai Framework for Disaster Risk Reduction 2015-2030 (SFDRR). Based on existing research of expected annual multi-hazard intensity (M (h) ) of 11 hazards at the 0.5A degrees A xA 0.5A degrees grid scale in the World Atlas of Natural Disaster Risk, including earthquake, volcanic eruption, landslide, flood, storm surge, tropical cyclone, sand and dust storm, drought, heat wave, cold wave, and wildfire, a vulnerability model involving M (h) and GDP per capita was developed to estimate the mortality level and scale of affected populations in 2005-2015 and 2020-2030. Global mortality and affected population risks were then mapped at the 0.5A degrees A xA 0.5A degrees grid scale and the mortality and affected population rates were ranked at the national scale. The results show that most countries can achieve the target of reducing the mortality and affected population rates. Countries with increasing rates such as Bangladesh and Madagascar, where the coping capacity for natural hazard risks cannot keep pace with the increase of M (h) and the growth of exposure, should be the 'hotspots' of concern in global disaster risk reduction. The method proposed to quantitatively calculate the mortality and affected population risks can provide scientific and technical support for assessing global and national/regional progress in achieving the outcome and goal of the SFDRR.展开更多
Coping with extreme climate events and its related climatic disasters caused by climate change has become a global issue and drew wide attention from scientists, policy-makers and public. This paper calculated the exp...Coping with extreme climate events and its related climatic disasters caused by climate change has become a global issue and drew wide attention from scientists, policy-makers and public. This paper calculated the expected annual multiple climatic hazards intensity index based on the results of nine climatic hazards including tropical cyclone, flood, landslide, storm surge, sand-dust storm, drought, heat wave, cold wave and wildfire. Then a vulnerability model involving the coping capacity indicator with mortality rate, affected population rate and GDP loss rate, was developed to estimate the expected annual affected population, mortality and GDP loss risks. The results showed that: countries with the highest risks are also the countries with large population or GDP. To substantially reduce the global total climatic hazards risks, these countries should reduce the exposure and improving the governance of integrated climatic risk; Without considering the total exposure, countries with the high mortality rate, affected population rate or GDP loss rate, which also have higher or lower coping capacity, such as the Philippines, Bangladesh and Vietnam, are the hotspots of the planning and strategy making for the climatic disaster risk reduction and should focus on promoting the coping capacity.展开更多
基金funded by the Innovative Research Group Project of National Natural Science Foundation of China (41321001)the Chinese National Basic Research Program (973 Program):‘‘Global Change and Environmental Risk Relationships and Adaptability Paradigm’’(2012CB955404)the 111 project ‘‘Hazard and Risk Science Base at Beijing Normal University’’ under Grant B08008, Ministry of Education and State Administration of Foreign Experts Affairs, China
文摘Substantial reduction in both mortality from and the number of people affected by natural hazards by 2030 are two principal targets that can be measured to assess global progress toward meeting the goals of the Sendai Framework for Disaster Risk Reduction 2015-2030 (SFDRR). Based on existing research of expected annual multi-hazard intensity (M (h) ) of 11 hazards at the 0.5A degrees A xA 0.5A degrees grid scale in the World Atlas of Natural Disaster Risk, including earthquake, volcanic eruption, landslide, flood, storm surge, tropical cyclone, sand and dust storm, drought, heat wave, cold wave, and wildfire, a vulnerability model involving M (h) and GDP per capita was developed to estimate the mortality level and scale of affected populations in 2005-2015 and 2020-2030. Global mortality and affected population risks were then mapped at the 0.5A degrees A xA 0.5A degrees grid scale and the mortality and affected population rates were ranked at the national scale. The results show that most countries can achieve the target of reducing the mortality and affected population rates. Countries with increasing rates such as Bangladesh and Madagascar, where the coping capacity for natural hazard risks cannot keep pace with the increase of M (h) and the growth of exposure, should be the 'hotspots' of concern in global disaster risk reduction. The method proposed to quantitatively calculate the mortality and affected population risks can provide scientific and technical support for assessing global and national/regional progress in achieving the outcome and goal of the SFDRR.
基金The Innovative Research Group Project of National Natural Science Foundation of China,No.41321001The National Basic Research Program(973 Program),No.2012CB955404The Program for Introducing Talents of Disciplines to Universities funded by the Ministry of Education and State Administration of Foreign Experts Affairs,China,No.B08008
文摘Coping with extreme climate events and its related climatic disasters caused by climate change has become a global issue and drew wide attention from scientists, policy-makers and public. This paper calculated the expected annual multiple climatic hazards intensity index based on the results of nine climatic hazards including tropical cyclone, flood, landslide, storm surge, sand-dust storm, drought, heat wave, cold wave and wildfire. Then a vulnerability model involving the coping capacity indicator with mortality rate, affected population rate and GDP loss rate, was developed to estimate the expected annual affected population, mortality and GDP loss risks. The results showed that: countries with the highest risks are also the countries with large population or GDP. To substantially reduce the global total climatic hazards risks, these countries should reduce the exposure and improving the governance of integrated climatic risk; Without considering the total exposure, countries with the high mortality rate, affected population rate or GDP loss rate, which also have higher or lower coping capacity, such as the Philippines, Bangladesh and Vietnam, are the hotspots of the planning and strategy making for the climatic disaster risk reduction and should focus on promoting the coping capacity.