The trajectory tracking control is considered for nonholonomic mechanical systems with affine constraints and dynamic friction. A new state transformation is proposed to deal with affine constraints, and then an integ...The trajectory tracking control is considered for nonholonomic mechanical systems with affine constraints and dynamic friction. A new state transformation is proposed to deal with affine constraints, and then an integral feedback compensation strategy is used to identify the dynamic friction. The proposed controller ensures that the output tracking errors converge to zero as t →∞.As an application, a detailed example is presented to illustrate the effectiveness of the control scheme.展开更多
Adaptive motion/force tracking control is considered for a class of mobile manipulators with affine constraints and under-actuated joints in the presence of uncertainties in this paper. Dynamic equation of mobile mani...Adaptive motion/force tracking control is considered for a class of mobile manipulators with affine constraints and under-actuated joints in the presence of uncertainties in this paper. Dynamic equation of mobile manipulator is transformed into a controllable form based on dynamic coupling technique. In view of the asymptotic tracking idea and adaptive theory, adaptive controllers are proposed to achieve the desired control objective. Detailed simulation results confirm the validity of the control strategy.展开更多
This paper focuses on the problem of modeling and finite-time tracking control for mobile manipulators with affine and holonomic constraints. A reduced dynamic model is obtained by appropriately processing anne and ho...This paper focuses on the problem of modeling and finite-time tracking control for mobile manipulators with affine and holonomic constraints. A reduced dynamic model is obtained by appropriately processing anne and holonomic constraints, respectively. Then finite-time tracking controllers are designed to ensure that output tracking errors of closed-loop system converge to zero in finite time while the constraint force remains bounded. Finally, detailed simulation results are provided to confirm the effectiveness of the control strategy.展开更多
This paper is devoted to the problem of modeling and adaptive motion/force tracking for a class of nonholonomic dynamic systems with affine constraints(NDSAC): a vertical wheel on a rotating table. Prior to the develo...This paper is devoted to the problem of modeling and adaptive motion/force tracking for a class of nonholonomic dynamic systems with affine constraints(NDSAC): a vertical wheel on a rotating table. Prior to the development of tracking controller,the dynamic model of the wheel in question is derived in a meticulous manner. A continuously differentiable friction model is also considered in the modeling. By exploiting the inherent cascade interconnected structure of the wheel dynamics, an adaptive motion/force tracking controller is presented guaranteeing that the trajectory tracking errors asymptotically converge to zero while the contact force tracking errors can be made small enough by tuning design parameters. Simulation results are provided to validate the effectiveness of the proposed tracking methodology.展开更多
基金supported by National Natural Science Foundation of China(Nos.61273091,61004013 and 61304059)Ph.D.Programs Foundation of Ministry of Education of China,and Fundamental Research Funds for the Central Universities(No.CXLX12 0096)
文摘The trajectory tracking control is considered for nonholonomic mechanical systems with affine constraints and dynamic friction. A new state transformation is proposed to deal with affine constraints, and then an integral feedback compensation strategy is used to identify the dynamic friction. The proposed controller ensures that the output tracking errors converge to zero as t →∞.As an application, a detailed example is presented to illustrate the effectiveness of the control scheme.
基金supported by National Natural Science Foundation of China (Nos.61273091 and 61403228)Project of Taishan Scholar of Shandong Province of ChinaPh.D.Programs Foundation of Ministry of Education of China (No.20123705110002)
文摘Adaptive motion/force tracking control is considered for a class of mobile manipulators with affine constraints and under-actuated joints in the presence of uncertainties in this paper. Dynamic equation of mobile manipulator is transformed into a controllable form based on dynamic coupling technique. In view of the asymptotic tracking idea and adaptive theory, adaptive controllers are proposed to achieve the desired control objective. Detailed simulation results confirm the validity of the control strategy.
基金supported by the National Natural Science Foundation of China under Grant Nos.61273091and 61573177the Project of Taishan Scholar of Shandong Province
文摘This paper focuses on the problem of modeling and finite-time tracking control for mobile manipulators with affine and holonomic constraints. A reduced dynamic model is obtained by appropriately processing anne and holonomic constraints, respectively. Then finite-time tracking controllers are designed to ensure that output tracking errors of closed-loop system converge to zero in finite time while the constraint force remains bounded. Finally, detailed simulation results are provided to confirm the effectiveness of the control strategy.
基金supported by the National Natural Science Foundation of China(6127309161403227+3 种基金61403228)the Ph.D.Programs Foundation of Ministry of Education of Chinathe Fundamental Research Funds for the Central Universities(KYLX15 0116)the Project of Taishan Scholar of Shandong Province of China
文摘This paper is devoted to the problem of modeling and adaptive motion/force tracking for a class of nonholonomic dynamic systems with affine constraints(NDSAC): a vertical wheel on a rotating table. Prior to the development of tracking controller,the dynamic model of the wheel in question is derived in a meticulous manner. A continuously differentiable friction model is also considered in the modeling. By exploiting the inherent cascade interconnected structure of the wheel dynamics, an adaptive motion/force tracking controller is presented guaranteeing that the trajectory tracking errors asymptotically converge to zero while the contact force tracking errors can be made small enough by tuning design parameters. Simulation results are provided to validate the effectiveness of the proposed tracking methodology.