Suppose F is a field consisting of at least four elements. Let Mn(F) and SP2n(F) be the linear space of all n × n matrices and the group of all 2n × 2n symplectic matrices over F, respectively. A linear ...Suppose F is a field consisting of at least four elements. Let Mn(F) and SP2n(F) be the linear space of all n × n matrices and the group of all 2n × 2n symplectic matrices over F, respectively. A linear operator L : M2n(F) → M2n(F) is said to preserve the symplectic group if L(SP2n(F)) = SP2n(F). It is shown that L is an invertible preserver of the symplectic group if and only if L takes the form (i) L(X) = QPXP^-1 for any X ∈ M2n(F) or (ii) L(X) = QPX^TP^-1 for any X ∈M2n(F), where Q ∈ SP2n(F) and P is a generalized symplectic matrix. This generalizes the result derived by Pierce in Canad J. Math., 3(1975), 715-724.展开更多
Let G be a symplectic or orthogonal group defined over a finite field with odd characteristic and let D≤G be a Sylow 2-subgroup.In this paper,we classify the essential 2-subgroups and determine the essential 2-rank o...Let G be a symplectic or orthogonal group defined over a finite field with odd characteristic and let D≤G be a Sylow 2-subgroup.In this paper,we classify the essential 2-subgroups and determine the essential 2-rank of the Frobenius category FD(G).Together with the results of An–Dietrich and Cao–An–Zeng,this completes the work of essential subgroups and essential ranks of classical groups.展开更多
Let ASG(2v + l, v; Fq) be the (2v +l)-dimensional affine-singular symplectic space over the finite field Fq and ASp2v+l,v(Fq) be the affine-singular symplectic group of degree 2v + l over Fq. Let O be any or...Let ASG(2v + l, v; Fq) be the (2v +l)-dimensional affine-singular symplectic space over the finite field Fq and ASp2v+l,v(Fq) be the affine-singular symplectic group of degree 2v + l over Fq. Let O be any orbit of flats under ASp2v+l,v(Fq). Denote by J the set of all flats which are joins of flats in O such that O LJ and assume the join of the empty set of flats in ASG(2v + l, v;Fq) is φ. Ordering LJ by ordinary or reverse inclusion, then two lattices axe obtained. This paper firstly studies the inclusion relations between different lattices, then determines a characterization of flats contained in a given lattice LJ, when the lattices form geometric lattice, lastly gives the characteristic polynomial of LJ.展开更多
By means of the theory of harmonic maps into the unitary group U(N), the authors study harmonic maps into the symplectic group Sp(N). The symplectic uniton and symplectic ex--tended uniton are introduced. The method o...By means of the theory of harmonic maps into the unitary group U(N), the authors study harmonic maps into the symplectic group Sp(N). The symplectic uniton and symplectic ex--tended uniton are introduced. The method of the symplectic Backlund transformation and the Darboux transformation is used to construct new symplectic unitons from a known one.展开更多
All the symplectic matrices possessing a fixed eigenvalue ω on the unit circle form a hypersurface in the real symplectic group Sp(2n). This paper is devoted to the study of the topological structures of this hypersu...All the symplectic matrices possessing a fixed eigenvalue ω on the unit circle form a hypersurface in the real symplectic group Sp(2n). This paper is devoted to the study of the topological structures of this hypersurface and its complement in Sp(2n).展开更多
This paper is divided in two parts: in Section 2, we define recursively a privileged basis of the primitive forms in a symplectic space(V^(2n), ω). Successively, in Section 3, we apply our construction in the se...This paper is divided in two parts: in Section 2, we define recursively a privileged basis of the primitive forms in a symplectic space(V^(2n), ω). Successively, in Section 3, we apply our construction in the setting of Heisenberg groups H^n, n ≥ 1, to write in coordinates the exterior differential of the so-called Rumin's complex of differential forms in H^n.展开更多
Let Fq be a finite field of odd characteristic, m, v the integers with 1 ≤ m ≤ v and K a 2v × 2v nonsingular alternate matrix over Fq. In this paper, the generalized symplectic graph GSp2v(q, m) relative to K...Let Fq be a finite field of odd characteristic, m, v the integers with 1 ≤ m ≤ v and K a 2v × 2v nonsingular alternate matrix over Fq. In this paper, the generalized symplectic graph GSp2v(q, m) relative to K over Fq is introduced. It is the graph with m-dimensional totally isotropic subspaces of the 2v-dimensional symplectic space Fq(2v) as its vertices and two vertices P and Q are adjacent if and only if the rank of PKQw is 1 and the dimension of P ∩ Q is m - 1. It is proved that the full automorphism group of the graph GSp2v(q, m) is the projective semilinear symplectic group P∑p(2v, q).展开更多
Let S be a complex smooth projective surface of Kodaira dimension one. We show that the group Auts(S) of symplectic automorphisms acts trivially on the Albanese kernel CH_(0)(S)albof the 0-th Chow group CH_(0)(S), unl...Let S be a complex smooth projective surface of Kodaira dimension one. We show that the group Auts(S) of symplectic automorphisms acts trivially on the Albanese kernel CH_(0)(S)albof the 0-th Chow group CH_(0)(S), unless possibly if the geometric genus and the irregularity satisfy pg(S) = q(S) ∈ {1, 2}. In the exceptional cases, the image of the homomorphism Auts(S) → Aut(CH_(0)(S)alb) has the order at most 3. Our arguments actually take care of the group Autf(S) of fibration-preserving automorphisms of elliptic surfaces f : S → B. We prove that if σ ∈ Autf(S) induces the trivial action on Hi,0(S) for i > 0, then it induces the trivial action on CH_(0)(S)alb. As a by-product we obtain that if S is an elliptic K3 surface, then Autf(S)∩Auts(S)acts trivially on CH_(0)(S)alb.展开更多
A complete list of representatives of conjugacy classes of torsion in 4×4 integral symplectic group is given in this paper. There are 55 distinct such classes and each torsion element has order of 2, 3, 4, 5, 6, ...A complete list of representatives of conjugacy classes of torsion in 4×4 integral symplectic group is given in this paper. There are 55 distinct such classes and each torsion element has order of 2, 3, 4, 5, 6, 8, 10 and 12.展开更多
In this paper,we present a categorical version of the first and second fundamental theorems of the invariant theory for the quantized symplectic groups.Our methods depend on the theory of braided strict monoidal categ...In this paper,we present a categorical version of the first and second fundamental theorems of the invariant theory for the quantized symplectic groups.Our methods depend on the theory of braided strict monoidal categories which are pivotal,more explicitly,the diagram category of framed tangles.展开更多
Let a finite group act semi-freely on a closed symplectic four-manifold with a 2-dimensional fixed point set. Then we show that the relative Gromov-Witten invariants are the same as the invariants on the quotient set-...Let a finite group act semi-freely on a closed symplectic four-manifold with a 2-dimensional fixed point set. Then we show that the relative Gromov-Witten invariants are the same as the invariants on the quotient set-up with respect to the fixed point set.展开更多
文摘Suppose F is a field consisting of at least four elements. Let Mn(F) and SP2n(F) be the linear space of all n × n matrices and the group of all 2n × 2n symplectic matrices over F, respectively. A linear operator L : M2n(F) → M2n(F) is said to preserve the symplectic group if L(SP2n(F)) = SP2n(F). It is shown that L is an invertible preserver of the symplectic group if and only if L takes the form (i) L(X) = QPXP^-1 for any X ∈ M2n(F) or (ii) L(X) = QPX^TP^-1 for any X ∈M2n(F), where Q ∈ SP2n(F) and P is a generalized symplectic matrix. This generalizes the result derived by Pierce in Canad J. Math., 3(1975), 715-724.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11601225,11871360)the Foundation for University Young Key Teacher by He’nan Education Committee (Grant No.2020GGJS079)+2 种基金the China Scholarship Councilsupported by the Marsden Fund (of New Zealand)via award number UOA 1626
文摘Let G be a symplectic or orthogonal group defined over a finite field with odd characteristic and let D≤G be a Sylow 2-subgroup.In this paper,we classify the essential 2-subgroups and determine the essential 2-rank of the Frobenius category FD(G).Together with the results of An–Dietrich and Cao–An–Zeng,this completes the work of essential subgroups and essential ranks of classical groups.
基金Supported by the National Natural Science Foundation of China under Grant No.61179026 and No.11701558
文摘Let ASG(2v + l, v; Fq) be the (2v +l)-dimensional affine-singular symplectic space over the finite field Fq and ASp2v+l,v(Fq) be the affine-singular symplectic group of degree 2v + l over Fq. Let O be any orbit of flats under ASp2v+l,v(Fq). Denote by J the set of all flats which are joins of flats in O such that O LJ and assume the join of the empty set of flats in ASG(2v + l, v;Fq) is φ. Ordering LJ by ordinary or reverse inclusion, then two lattices axe obtained. This paper firstly studies the inclusion relations between different lattices, then determines a characterization of flats contained in a given lattice LJ, when the lattices form geometric lattice, lastly gives the characteristic polynomial of LJ.
基金Project supported by the National Natural Science Foundation of China (No.19531050)the Scientific Foundation of the Minnstr
文摘By means of the theory of harmonic maps into the unitary group U(N), the authors study harmonic maps into the symplectic group Sp(N). The symplectic uniton and symplectic ex--tended uniton are introduced. The method of the symplectic Backlund transformation and the Darboux transformation is used to construct new symplectic unitons from a known one.
基金Partially supported by NNSFMCSEC of ChinaQiu Shi Sci Tech. Foundation
文摘All the symplectic matrices possessing a fixed eigenvalue ω on the unit circle form a hypersurface in the real symplectic group Sp(2n). This paper is devoted to the study of the topological structures of this hypersurface and its complement in Sp(2n).
基金Supported by University of Bolognafunds for selected research topics+1 种基金supported by the Gruppo Nazionale per l’Analisi Matematica,la Probabilita e le loro Applicazioni(GNAMPA)of the Istituto Nazionale di Alta Matematica(INdA M)supported by P.R.I.N.of M.I.U.R.,Italy
文摘This paper is divided in two parts: in Section 2, we define recursively a privileged basis of the primitive forms in a symplectic space(V^(2n), ω). Successively, in Section 3, we apply our construction in the setting of Heisenberg groups H^n, n ≥ 1, to write in coordinates the exterior differential of the so-called Rumin's complex of differential forms in H^n.
基金supported by National Natural Science Foundation of China(Grant Nos.10990011,11271004 and 61071221)the Doctoral Program of Higher Education of China(Grant No.20100001110007)the Natural Science Foundation of Hebei Province(Grant No.A2009000253)
文摘Let Fq be a finite field of odd characteristic, m, v the integers with 1 ≤ m ≤ v and K a 2v × 2v nonsingular alternate matrix over Fq. In this paper, the generalized symplectic graph GSp2v(q, m) relative to K over Fq is introduced. It is the graph with m-dimensional totally isotropic subspaces of the 2v-dimensional symplectic space Fq(2v) as its vertices and two vertices P and Q are adjacent if and only if the rank of PKQw is 1 and the dimension of P ∩ Q is m - 1. It is proved that the full automorphism group of the graph GSp2v(q, m) is the projective semilinear symplectic group P∑p(2v, q).
基金supported by National Natural Science Foundation of China(Grant Nos.11971399 and 11771294)the Presidential Research Fund of Xiamen University(Grant No.20720210006)。
文摘Let S be a complex smooth projective surface of Kodaira dimension one. We show that the group Auts(S) of symplectic automorphisms acts trivially on the Albanese kernel CH_(0)(S)albof the 0-th Chow group CH_(0)(S), unless possibly if the geometric genus and the irregularity satisfy pg(S) = q(S) ∈ {1, 2}. In the exceptional cases, the image of the homomorphism Auts(S) → Aut(CH_(0)(S)alb) has the order at most 3. Our arguments actually take care of the group Autf(S) of fibration-preserving automorphisms of elliptic surfaces f : S → B. We prove that if σ ∈ Autf(S) induces the trivial action on Hi,0(S) for i > 0, then it induces the trivial action on CH_(0)(S)alb. As a by-product we obtain that if S is an elliptic K3 surface, then Autf(S)∩Auts(S)acts trivially on CH_(0)(S)alb.
基金the Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry
文摘A complete list of representatives of conjugacy classes of torsion in 4×4 integral symplectic group is given in this paper. There are 55 distinct such classes and each torsion element has order of 2, 3, 4, 5, 6, 8, 10 and 12.
基金supported by National Natural Science Foundation of China(Grant No.11301195)China Scholarship Council and a research foundation of Huaqiao University(Grant No.2014KJTD14)。
文摘In this paper,we present a categorical version of the first and second fundamental theorems of the invariant theory for the quantized symplectic groups.Our methods depend on the theory of braided strict monoidal categories which are pivotal,more explicitly,the diagram category of framed tangles.
基金Supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science, and Technology (2010-0011145)
文摘Let a finite group act semi-freely on a closed symplectic four-manifold with a 2-dimensional fixed point set. Then we show that the relative Gromov-Witten invariants are the same as the invariants on the quotient set-up with respect to the fixed point set.