High-affinity antibodies are widely used in diagnostics and for the treatment of human diseases.However,most antibodies are isolated from semi-synthetic libraries by phage display and do not possess in vivo affinity m...High-affinity antibodies are widely used in diagnostics and for the treatment of human diseases.However,most antibodies are isolated from semi-synthetic libraries by phage display and do not possess in vivo affinity maturation,which is triggered by antigen immunization.It is therefore necessary to engineer the affinity of these antibodies by way of in vitro assaying.In this study,we optimized the affinity of two human monoclonal antibodies which were isolated by phage display in a previous related study.For the 42A1 antibody,which targets the liver cancer antigen glypican-3,the variant T57H in the second complementarity-determining region of the heavy chain(CDR-H2)exhibited a 2.6-fold improvement in affinity,as well as enhanced cell-binding activity.For the I4A3 antibody to severe acute respiratory syndrome coronavirus 2,beneficial single mutations in CDR-H2 and CDR-H3 were randomly combined to select the best synergistic mutations.Among these,the mutation S53P-S98T improved binding affinity(about 3.7 fold)and the neutralizing activity(about 12 fold)compared to the parent antibody.Taken together,single mutations of key residues in antibody CDRs were enough to increase binding affinity with improved antibody functions.The mutagenic combination of key residues in different CDRs creates additive enhancements.Therefore,this study provides a safe and effective in vitro strategy for optimizing antibody affinity.展开更多
Activation-induced cytidine deaminase(AID)is required for the generation of antibody diversity through initiat-ing both somatic hypermutation(SHM)and class switch recombination.A few research groups have success-fully...Activation-induced cytidine deaminase(AID)is required for the generation of antibody diversity through initiat-ing both somatic hypermutation(SHM)and class switch recombination.A few research groups have success-fully used the feature of AID for generating mutant li-braries in directed evolution of target proteins in B cells in vitro.B cells,cultured in suspension,are not con-venient for transfection and cloning.In this study,we established an AID-based mutant accumulation and sorting system in adherent human cells.Mouse AID gene was first transfected into the human non-small cell lung carcinoma H1299 cells,and a stable cell clone(H1299-AID)was selected.Afterwards,anti-hTNF-αscFv(ATscFv)was transfected into H1299-AID cells and ATscFv was displayed on the surface of H1299-AID cells.By 4-round amplification/flow cytometric sorting for cells with the highest affinities to hTNF-alpha,two ATscFv mutant gene clones were isolated.Compared with the wild type ATscFv,the two mutants were much more efficient in neutralizing cytotoxicity of hTNF-alpha.The results indicate that directed evolution by somatic hypermutation can be carried out in adherent non-B cells,which makes directed evolution in mammalian cells easier and more efficient.展开更多
Respiratory syncytial virus(RSV) continues to pose serious threats to pediatric populations due to the lack of a vaccine and effective antiviral drugs. RSV fusion(F) glycoprotein mediates viral-host membrane fusion an...Respiratory syncytial virus(RSV) continues to pose serious threats to pediatric populations due to the lack of a vaccine and effective antiviral drugs. RSV fusion(F) glycoprotein mediates viral-host membrane fusion and is a key target for neutralizing antibodies. We generated 23 full-human monoclonal antibodies(hm Abs) against prefusion F protein(pre-F) from a healthy adult with natural RSV infection by single B cell cloning technique. A highly potent RSV-neutralizing hm Ab, named as 25-20, is selected, which targets a new site Φ-specific epitope. Site-directed mutagenesis and structural modelling analysis demonstrated that 25-20 mainly targets a highly conserved hydrophobic region located at the a4 helix and a1 helix of pre-F, indicating a site of vulnerability for drug and vaccine design. It is worth noting that 25-20 uses an unreported inferred germline(i GL) that binds very poorly to pre-F, thus high levels of somatic mutations are needed to gain high binding affinity with pre-F. Our observation helps to understand the evolution of RSV antibody during natural infection. Furthermore, by in silico prediction and experimental verification, we optimized 25-20 with KD values as low as picomolar range. Therefore, the optimized 25-20 represents an excellent candidate for passive protection against RSV infection.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 81972284)
文摘High-affinity antibodies are widely used in diagnostics and for the treatment of human diseases.However,most antibodies are isolated from semi-synthetic libraries by phage display and do not possess in vivo affinity maturation,which is triggered by antigen immunization.It is therefore necessary to engineer the affinity of these antibodies by way of in vitro assaying.In this study,we optimized the affinity of two human monoclonal antibodies which were isolated by phage display in a previous related study.For the 42A1 antibody,which targets the liver cancer antigen glypican-3,the variant T57H in the second complementarity-determining region of the heavy chain(CDR-H2)exhibited a 2.6-fold improvement in affinity,as well as enhanced cell-binding activity.For the I4A3 antibody to severe acute respiratory syndrome coronavirus 2,beneficial single mutations in CDR-H2 and CDR-H3 were randomly combined to select the best synergistic mutations.Among these,the mutation S53P-S98T improved binding affinity(about 3.7 fold)and the neutralizing activity(about 12 fold)compared to the parent antibody.Taken together,single mutations of key residues in antibody CDRs were enough to increase binding affinity with improved antibody functions.The mutagenic combination of key residues in different CDRs creates additive enhancements.Therefore,this study provides a safe and effective in vitro strategy for optimizing antibody affinity.
基金funded by grants from the Ministry of Science and Technology of People’s Republic of China(Nos.2011CBA00906 and 2011YQ03013404).
文摘Activation-induced cytidine deaminase(AID)is required for the generation of antibody diversity through initiat-ing both somatic hypermutation(SHM)and class switch recombination.A few research groups have success-fully used the feature of AID for generating mutant li-braries in directed evolution of target proteins in B cells in vitro.B cells,cultured in suspension,are not con-venient for transfection and cloning.In this study,we established an AID-based mutant accumulation and sorting system in adherent human cells.Mouse AID gene was first transfected into the human non-small cell lung carcinoma H1299 cells,and a stable cell clone(H1299-AID)was selected.Afterwards,anti-hTNF-αscFv(ATscFv)was transfected into H1299-AID cells and ATscFv was displayed on the surface of H1299-AID cells.By 4-round amplification/flow cytometric sorting for cells with the highest affinities to hTNF-alpha,two ATscFv mutant gene clones were isolated.Compared with the wild type ATscFv,the two mutants were much more efficient in neutralizing cytotoxicity of hTNF-alpha.The results indicate that directed evolution by somatic hypermutation can be carried out in adherent non-B cells,which makes directed evolution in mammalian cells easier and more efficient.
基金supported by the Ministry of Science and Technology of China(2018YFA0507402)the National Natural Science Foundation of China(32270991,82041015,31630024,81761128009,32100123,32100751,81991492 and 82041039)。
文摘Respiratory syncytial virus(RSV) continues to pose serious threats to pediatric populations due to the lack of a vaccine and effective antiviral drugs. RSV fusion(F) glycoprotein mediates viral-host membrane fusion and is a key target for neutralizing antibodies. We generated 23 full-human monoclonal antibodies(hm Abs) against prefusion F protein(pre-F) from a healthy adult with natural RSV infection by single B cell cloning technique. A highly potent RSV-neutralizing hm Ab, named as 25-20, is selected, which targets a new site Φ-specific epitope. Site-directed mutagenesis and structural modelling analysis demonstrated that 25-20 mainly targets a highly conserved hydrophobic region located at the a4 helix and a1 helix of pre-F, indicating a site of vulnerability for drug and vaccine design. It is worth noting that 25-20 uses an unreported inferred germline(i GL) that binds very poorly to pre-F, thus high levels of somatic mutations are needed to gain high binding affinity with pre-F. Our observation helps to understand the evolution of RSV antibody during natural infection. Furthermore, by in silico prediction and experimental verification, we optimized 25-20 with KD values as low as picomolar range. Therefore, the optimized 25-20 represents an excellent candidate for passive protection against RSV infection.