It is assumed that the shift of a strong magnetic field region with a positive gradient from exit plane to outside, namely the transit from a normal loaded magnetic field to an aft-loaded one, enhances the multiple io...It is assumed that the shift of a strong magnetic field region with a positive gradient from exit plane to outside, namely the transit from a normal loaded magnetic field to an aft-loaded one, enhances the multiple ionization process in the magnetically shielded Hall thruster. To confirm this conjecture, a comparative study is carried out numerically with a particle-in-cell method. The simulation results prove that compared with the normal loaded magnetic field, the application of aft-loaded magnetic field enhances the multiple ionization process. This study further analyzes the ionization characteristics of the transition from low-charged ions to high-charged ions under two magnetic field conditions and the influence of the magnetic strength of aft-loaded magnetic field on the multiple ionization characteristics. The study described herein is useful for understanding the discharge characteristics of Hall thruster with an aft-loaded magnetic field.展开更多
For evaluate the aerodynamic character of the turbine cascades which have the aft-loaded profile, the experimental investigation was carried out on the low speed annular wind tunnel. And the detailed measurements of t...For evaluate the aerodynamic character of the turbine cascades which have the aft-loaded profile, the experimental investigation was carried out on the low speed annular wind tunnel. And the detailed measurements of the aerodynamic parameters were made from upstream to downstream of the two type turbine cascades, the one is the conventional straight blades cascade, the other is the curved blades cascades. The static pressure distributions on the endwall and the blade surface were also carried out. The influence of the aft-loaded profile and the curved blade on the development of loss and the pressure distribution was discussed, and analyses the different flow phenomena and mechanism in two type turbine cascades.展开更多
Based on the method to change blade loading type along blade height, that is, applying aft-loading at both end zones of cascade while applying fore-loading in the mid zone of cascade, HTC(Harbin Turbine Company) desig...Based on the method to change blade loading type along blade height, that is, applying aft-loading at both end zones of cascade while applying fore-loading in the mid zone of cascade, HTC(Harbin Turbine Company) designed a twisted and bowed stationary cascade with low aspect ratio and large enthalpy drop. To verify the aerodynamic performance of such cascade, firstly, low-speed wind tunnel tests were conducted to validate the calculation results of commercial software CFX, and then numerical simulations were made for the aerodynamic performance of the cascade at different Mach numbers. The simulation results show that the large enthalpy drop stationary cascade designed by HTC can offer good aerodynamic performance while keeping its high-load characteristics in the change range of outlet Mach number as stated in this paper.展开更多
The present paper reports the results of an experimental investigation aimed at comparing aerodynamic perform- ance of three low-pressure turbine cascades for several Reynolds numbers under steady and unsteady inflows...The present paper reports the results of an experimental investigation aimed at comparing aerodynamic perform- ance of three low-pressure turbine cascades for several Reynolds numbers under steady and unsteady inflows. This study is focused on finding design criteria useful to reduce both profile and secondary losses in the aero-engine LP turbine for the different flight conditions. The baseline blade cascade, characterized by a standard aerodynamic loading (Zw=1.03), has been compared with two Ultra-High-Lift profiles with the same Zweifel number (Zw=1.3 for both cascades), but different velocity peak positions, leading to front and mid-loaded blade cascade configurations. The aerodynamic flow fields downstream of the cascades have been experimentally in- vestigated for Reynolds numbers in the range 70000〈Re〈300000, where lower and upper limits are typical of cruise and take-off/landing conditions, respectively. The effects induced by the incoming wakes at the reduced frequency ./+=0.62 on both profile and secondary flow losses for the three different cascade designs have been studied. Total pressure and velocity distributions have been measured by means of a miniaturized 5-hole probe in a tangential plane downstream of the cascade for both inflow conditions. The analysis of the results allows the evaluation of the aerodynamic performance of the blade cascades in terms of profile and secondary losses and the understanding of the effects of loading distribution and Zweifel number on secondary flows. When operating un- der unsteady inflow, contrarily to the steady case, the mid-loaded cascade has been found to be characterized by the lowest profile and secondary losses, making it the most attractive solution for the design of blades working in real conditions where unsteady inflow effects are present.展开更多
基金funded by National Natural Science Foundation of China (Nos. 52076054 and 51736003)Advanced Space Propulsion Laboratory of Beijing Institute of Control Engineering and Beijing Engineering Research Center of Efficient and Green Aerospace Propulsion Technology (No. Lab ASP2019-04)+1 种基金the Civil Aerospace Technology Pre-research Project (No. D03015)the Defense Industrial Technology Development Program (No. JCKY2019603B005)。
文摘It is assumed that the shift of a strong magnetic field region with a positive gradient from exit plane to outside, namely the transit from a normal loaded magnetic field to an aft-loaded one, enhances the multiple ionization process in the magnetically shielded Hall thruster. To confirm this conjecture, a comparative study is carried out numerically with a particle-in-cell method. The simulation results prove that compared with the normal loaded magnetic field, the application of aft-loaded magnetic field enhances the multiple ionization process. This study further analyzes the ionization characteristics of the transition from low-charged ions to high-charged ions under two magnetic field conditions and the influence of the magnetic strength of aft-loaded magnetic field on the multiple ionization characteristics. The study described herein is useful for understanding the discharge characteristics of Hall thruster with an aft-loaded magnetic field.
文摘For evaluate the aerodynamic character of the turbine cascades which have the aft-loaded profile, the experimental investigation was carried out on the low speed annular wind tunnel. And the detailed measurements of the aerodynamic parameters were made from upstream to downstream of the two type turbine cascades, the one is the conventional straight blades cascade, the other is the curved blades cascades. The static pressure distributions on the endwall and the blade surface were also carried out. The influence of the aft-loaded profile and the curved blade on the development of loss and the pressure distribution was discussed, and analyses the different flow phenomena and mechanism in two type turbine cascades.
文摘Based on the method to change blade loading type along blade height, that is, applying aft-loading at both end zones of cascade while applying fore-loading in the mid zone of cascade, HTC(Harbin Turbine Company) designed a twisted and bowed stationary cascade with low aspect ratio and large enthalpy drop. To verify the aerodynamic performance of such cascade, firstly, low-speed wind tunnel tests were conducted to validate the calculation results of commercial software CFX, and then numerical simulations were made for the aerodynamic performance of the cascade at different Mach numbers. The simulation results show that the large enthalpy drop stationary cascade designed by HTC can offer good aerodynamic performance while keeping its high-load characteristics in the change range of outlet Mach number as stated in this paper.
文摘The present paper reports the results of an experimental investigation aimed at comparing aerodynamic perform- ance of three low-pressure turbine cascades for several Reynolds numbers under steady and unsteady inflows. This study is focused on finding design criteria useful to reduce both profile and secondary losses in the aero-engine LP turbine for the different flight conditions. The baseline blade cascade, characterized by a standard aerodynamic loading (Zw=1.03), has been compared with two Ultra-High-Lift profiles with the same Zweifel number (Zw=1.3 for both cascades), but different velocity peak positions, leading to front and mid-loaded blade cascade configurations. The aerodynamic flow fields downstream of the cascades have been experimentally in- vestigated for Reynolds numbers in the range 70000〈Re〈300000, where lower and upper limits are typical of cruise and take-off/landing conditions, respectively. The effects induced by the incoming wakes at the reduced frequency ./+=0.62 on both profile and secondary flow losses for the three different cascade designs have been studied. Total pressure and velocity distributions have been measured by means of a miniaturized 5-hole probe in a tangential plane downstream of the cascade for both inflow conditions. The analysis of the results allows the evaluation of the aerodynamic performance of the blade cascades in terms of profile and secondary losses and the understanding of the effects of loading distribution and Zweifel number on secondary flows. When operating un- der unsteady inflow, contrarily to the steady case, the mid-loaded cascade has been found to be characterized by the lowest profile and secondary losses, making it the most attractive solution for the design of blades working in real conditions where unsteady inflow effects are present.