The main sea water pump is the key equipment for the floating production storage and offloading (FPSO). Affected by some factors such as hull deformation, sea water corrosion, rigid base and pipeline stress, the vib...The main sea water pump is the key equipment for the floating production storage and offloading (FPSO). Affected by some factors such as hull deformation, sea water corrosion, rigid base and pipeline stress, the vibration value of main sea water pump in the horizontal direction is abnormally high and malfunctions usually happen. Therefore, it is essential to make fault diagnosis of main sea water pump, By conventional off-line monitoring and vibration amplitude spectrum analysis, the fault cycle is found and the alarm value and stop value of equipment are set, which is helpful to equipment maintenance and accident prevention.展开更多
AIM: To evaluate the efficacy and safety of active removal of silicone oil with low and high viscosity through a 23-gauge transconjunctival cannula using an external vacuum pump.METHODS: This study was conducted as a ...AIM: To evaluate the efficacy and safety of active removal of silicone oil with low and high viscosity through a 23-gauge transconjunctival cannula using an external vacuum pump.METHODS: This study was conducted as a prospective, interventional case series. A total of 22 eyes of 21 patients [1000 centistokes(c St): 17 eyes, 5700 c St:5 eyes] were included in this study. All patients underwent active silicone oil removal via the entire lumen of a 23-gauge microcannula with suction pressure of a650-700 mm Hg vacuum using an external vacuum pump. A tubing adaptor from the Total Plus Pak誖(Alcon,Fort Worth, USA) was used to join the microcannula and silicone vacuum tube connected to an external vacuum pump. Main outcome measures were mean removal time,changes of intraocular pressure(IOP) and visual acuity,and intraoperative and postoperative complications.RESULTS: Mean removal time(min) was 1.49±0.43 for1000 c St and 7. 12 ± 1. 27 for 5700 c St. The IOP was18.57±7.48 mm Hg at baseline, 11.68 ±4.55 mm Hg at day1 postoperatively(P <0.001), and 15.95±4.92, 16.82±3.81,17.41 ±3.50, and 17.09 ±3.01 mm Hg after one week, one month, three months, and six months, respectively. All patients showed improved or stabilized visual acuity.There was no occurrence of intraoperative or postoperative complications during the follow up period.CONCLUSION: This technique for active removal of silicone oil through a 23-gauge cannula using an external vacuum pump is fast, effective, and safe as well as economical for silicone oil with both low and high viscosity in all eyes with pseudophakia, aphakia, or phakia.展开更多
For the purpose of improving efficiency and realizing start–stop function, an electric oil pump(EOP) is integrated into an 8-speed automatic transmission(AT). A mathematical model is built to calculate the transmissi...For the purpose of improving efficiency and realizing start–stop function, an electric oil pump(EOP) is integrated into an 8-speed automatic transmission(AT). A mathematical model is built to calculate the transmission power loss and the hydraulic system leakage. Based on this model, a flow-based control strategy is developed for EOP to satisfy the system flow requirement. This control strategy is verified through the forward driving simulation. The results indicate that there is a best combination for the size of mechanical oil pump(MOP) and EOP in terms of minimum energy consumption. In order to get a quick and smooth starting process, control strategies of the EOP and the on-coming clutch are proposed. The test environment on a prototype vehicle is built to verify the feasibility of the integrated EOP and its control strategies. The results show that the selected EOP can satisfy the flow requirement and a quick and smooth starting performance is achieved in the start–stop function. This research has a high value for the forward design of EOP in automatic transmissions with respect to efficiency improvement and start–stop function.展开更多
The research on the oil film characteristic of piston pair is beneficial to the design and optimization of friction pair,which can improve the performance of piston pump.The fluid pressure of piston cavity is accurate...The research on the oil film characteristic of piston pair is beneficial to the design and optimization of friction pair,which can improve the performance of piston pump.The fluid pressure of piston cavity is accurately obtained by AMEsim simulation.Oil film thickness field model of piston pair under the slanting state of piston is established,and the distribution law is numerically analyzed under different speed and pressure by Matlab.The experiment model pump for oil film characteristic of piston pair is designed to measure oil film thickness under the pressure of 18 MPa.The experiment results show that oil film thickness varies greatly under high pressure,and oil film thickness fluctuates sharply under low speed.The minimum oil film thickness increases with spindle speed increasing and oil film characteristic of piston pair based on the numerical analysis method is verified.This method lays a foundation for studying the friction performance of piston pair in the axial piston pump.展开更多
The high-speed multi-cycle impact and speed, load fluctuant characteristics of a kind of narrow-width automotive engine oil-pump chain 06BN-1 are studied through engine assembly and road-drive tests to satisfy the lig...The high-speed multi-cycle impact and speed, load fluctuant characteristics of a kind of narrow-width automotive engine oil-pump chain 06BN-1 are studied through engine assembly and road-drive tests to satisfy the light-weight demand of engine. The worn surface morphologies of rubbing area between pin, bush and roller are also analyzed based on scanning electron microscope. The results show that the main wear mechanism of automotive engine oil-pump chain is fatigue wear, and it's failure mechanism is the forming, extending and flaking of cracks on top layer of pin and bush. Pin and bush both occurred cycle-soften phenomenon, and roller occurred cycle-harden. Fretting wear is one of the most important "fall to pieces" failure causes of automotive chain. Ensuring sufficient strength and plasticity of roller, as well as adopting suitable shaping technology are the effective methods to increase its resistance to multi-cycle impact.展开更多
Complexity arises when trying to maximize oil productions from fields using Electrical Submersible Pumps (ESP). The complexity increases with the increase in the number of reservoirs and wells in a particular field. I...Complexity arises when trying to maximize oil productions from fields using Electrical Submersible Pumps (ESP). The complexity increases with the increase in the number of reservoirs and wells in a particular field. Individual well’s ESP frequencies have to be constantly updated to ensure optimum oil productions from the field. The choice of the ESP frequency to be used must come from sound engineering decisions which do not come from mere intuition but must be backed up by mathematical models and computer simulations. This study proposes to evaluate field production network optimization on ESP lifted wells using quadratic sequential programming techniques. The optimization approach seeks to determine the ESP frequency for each well that will lead to the maximum field oil production while honouring the field operational constraints. Two reservoirs and five wells were considered. The non-linear optimization problem for the ESP lifted wells in the field was formulated with their boundary conditions. The simulations were performed in Prosper and GAP software. Prosper software was used in building the individual well’s ESP models for the five wells in the field. Individual well’s model in Prosper was exported to GAP and simulations were run in GAP for the field network system. GAP simulations were run in two cases: case 1 comprises ESP simulation without optimization while case 2 comprises ESP simulation with optimization. For case 1, fixed values of ESP frequency were selected for each well and the GAP software calculates the production rates from the wells in the network accruing from the ESP frequencies inputted. For case 2, there was no input ESP frequency as the GAP software was allowed to calculate based on optimization algorithms, the best suitable ESP frequencies for each well in the field that will lead to the maximum total oil production in the field network while honouring the operational constraint imposed on the systems in the field. From the results, it was realized that at the basis of well, the higher the ESP frequency, the higher the well’s production rates. Sensitivities on the effects of separator pressure on production rates show that separator pressures affect the well’s productions rates. A reduction in separator pressure from 200 psig to 80 psig led to a 1.69% increase in field oil rate. Comparison of results for case 1 and case 2 showed that ESP field network simulation with optimization yields had a higher field production rate than ESP field network simulations without optimization. There was an increase in oil rate of 1.16% and 2.66% for constraints 1 and 2 when ESP simulation was done with optimization rather than without optimization. Also, simulation with optimization comes with higher pump efficiency than simulation without optimization.展开更多
A new integrated oil production enhancement technology based on water-flooding energy recovery is proposed.After providing an extensive review of the existing scientific and technical literature on this subject,the pr...A new integrated oil production enhancement technology based on water-flooding energy recovery is proposed.After providing an extensive review of the existing scientific and technical literature on this subject,the proposed integrated technology is described together with the related process flow diagram,the criteria used to select a tar-get facility for its implementation and the outcomes of the laboratory studies conducted to analyze emulsion formation and separation kinetics.Moreover,the outcomes of numerical simulations performed using Ansys CFX software are also presented.According to these results,using the proposed approach the incremental oil production may reach 1.2 t/day(with a 13%increase)and more,even at low flow rates(less than 10 t/day),thereby providing evidence for the benefits associated with this integrated technology.展开更多
Electric submersible pumps account for a considerable proportion in the development of the Bohai Oilfield. Improving the system efficiency of the electric submersible pump wells, ensuring that the units operate in the...Electric submersible pumps account for a considerable proportion in the development of the Bohai Oilfield. Improving the system efficiency of the electric submersible pump wells, ensuring that the units operate in the high-efficiency zone, is essential. Analysis shows that the efficiency of the electric submersible pump system depends on the wear and tear of each component of the submersible pump equipment, the setting of operational parameters, and more importantly, the production status and daily management level of the oil well. Therefore, improving the structural performance of the submersible pump product, optimizing the parameters setting of the oil well, strengthening daily management, establishing a scientific management system, and improving the production management process and system can effectively improve the production efficiency and economic benefits of the oil well, and further achieve the goal of energy saving and emission reduction. In addition, it is necessary to actively promote the concept and technology of energy saving and emission reduction, encourage oilfield enterprises to explore effective measures to reduce the energy consumption of the electric submersible pump system by strengthening the scientific management system, and achieve a green, low-carbon, and high-quality development of oilfield production to achieve the unity of economic benefits, social benefits, and environmental benefits. This article applies the above measures in the P oilfield to achieve energy optimization of submersible electric pump systems, reducing the daily power consumption of single well submersible electric pump systems by 371 kWh per day, increasing the submersible electric pump's lifespan by 200 days, generating considerable project benefits.展开更多
文摘The main sea water pump is the key equipment for the floating production storage and offloading (FPSO). Affected by some factors such as hull deformation, sea water corrosion, rigid base and pipeline stress, the vibration value of main sea water pump in the horizontal direction is abnormally high and malfunctions usually happen. Therefore, it is essential to make fault diagnosis of main sea water pump, By conventional off-line monitoring and vibration amplitude spectrum analysis, the fault cycle is found and the alarm value and stop value of equipment are set, which is helpful to equipment maintenance and accident prevention.
文摘AIM: To evaluate the efficacy and safety of active removal of silicone oil with low and high viscosity through a 23-gauge transconjunctival cannula using an external vacuum pump.METHODS: This study was conducted as a prospective, interventional case series. A total of 22 eyes of 21 patients [1000 centistokes(c St): 17 eyes, 5700 c St:5 eyes] were included in this study. All patients underwent active silicone oil removal via the entire lumen of a 23-gauge microcannula with suction pressure of a650-700 mm Hg vacuum using an external vacuum pump. A tubing adaptor from the Total Plus Pak誖(Alcon,Fort Worth, USA) was used to join the microcannula and silicone vacuum tube connected to an external vacuum pump. Main outcome measures were mean removal time,changes of intraocular pressure(IOP) and visual acuity,and intraoperative and postoperative complications.RESULTS: Mean removal time(min) was 1.49±0.43 for1000 c St and 7. 12 ± 1. 27 for 5700 c St. The IOP was18.57±7.48 mm Hg at baseline, 11.68 ±4.55 mm Hg at day1 postoperatively(P <0.001), and 15.95±4.92, 16.82±3.81,17.41 ±3.50, and 17.09 ±3.01 mm Hg after one week, one month, three months, and six months, respectively. All patients showed improved or stabilized visual acuity.There was no occurrence of intraoperative or postoperative complications during the follow up period.CONCLUSION: This technique for active removal of silicone oil through a 23-gauge cannula using an external vacuum pump is fast, effective, and safe as well as economical for silicone oil with both low and high viscosity in all eyes with pseudophakia, aphakia, or phakia.
基金Project(51405010)supported by the National Natural Science Foundation of ChinaProject(2011BAG09B00)supported by the National Science and Technology Support Program of China
文摘For the purpose of improving efficiency and realizing start–stop function, an electric oil pump(EOP) is integrated into an 8-speed automatic transmission(AT). A mathematical model is built to calculate the transmission power loss and the hydraulic system leakage. Based on this model, a flow-based control strategy is developed for EOP to satisfy the system flow requirement. This control strategy is verified through the forward driving simulation. The results indicate that there is a best combination for the size of mechanical oil pump(MOP) and EOP in terms of minimum energy consumption. In order to get a quick and smooth starting process, control strategies of the EOP and the on-coming clutch are proposed. The test environment on a prototype vehicle is built to verify the feasibility of the integrated EOP and its control strategies. The results show that the selected EOP can satisfy the flow requirement and a quick and smooth starting performance is achieved in the start–stop function. This research has a high value for the forward design of EOP in automatic transmissions with respect to efficiency improvement and start–stop function.
基金Supported by the National Natural Science Foundation of China(No.51975164)the Fundamental Research Foundation for Universities of Heilongjiang Province.
文摘The research on the oil film characteristic of piston pair is beneficial to the design and optimization of friction pair,which can improve the performance of piston pump.The fluid pressure of piston cavity is accurately obtained by AMEsim simulation.Oil film thickness field model of piston pair under the slanting state of piston is established,and the distribution law is numerically analyzed under different speed and pressure by Matlab.The experiment model pump for oil film characteristic of piston pair is designed to measure oil film thickness under the pressure of 18 MPa.The experiment results show that oil film thickness varies greatly under high pressure,and oil film thickness fluctuates sharply under low speed.The minimum oil film thickness increases with spindle speed increasing and oil film characteristic of piston pair based on the numerical analysis method is verified.This method lays a foundation for studying the friction performance of piston pair in the axial piston pump.
基金This project is supported by National Innovation Foundation for Technology Based Firms, China (No. 01C26213300872)
文摘The high-speed multi-cycle impact and speed, load fluctuant characteristics of a kind of narrow-width automotive engine oil-pump chain 06BN-1 are studied through engine assembly and road-drive tests to satisfy the light-weight demand of engine. The worn surface morphologies of rubbing area between pin, bush and roller are also analyzed based on scanning electron microscope. The results show that the main wear mechanism of automotive engine oil-pump chain is fatigue wear, and it's failure mechanism is the forming, extending and flaking of cracks on top layer of pin and bush. Pin and bush both occurred cycle-soften phenomenon, and roller occurred cycle-harden. Fretting wear is one of the most important "fall to pieces" failure causes of automotive chain. Ensuring sufficient strength and plasticity of roller, as well as adopting suitable shaping technology are the effective methods to increase its resistance to multi-cycle impact.
文摘Complexity arises when trying to maximize oil productions from fields using Electrical Submersible Pumps (ESP). The complexity increases with the increase in the number of reservoirs and wells in a particular field. Individual well’s ESP frequencies have to be constantly updated to ensure optimum oil productions from the field. The choice of the ESP frequency to be used must come from sound engineering decisions which do not come from mere intuition but must be backed up by mathematical models and computer simulations. This study proposes to evaluate field production network optimization on ESP lifted wells using quadratic sequential programming techniques. The optimization approach seeks to determine the ESP frequency for each well that will lead to the maximum field oil production while honouring the field operational constraints. Two reservoirs and five wells were considered. The non-linear optimization problem for the ESP lifted wells in the field was formulated with their boundary conditions. The simulations were performed in Prosper and GAP software. Prosper software was used in building the individual well’s ESP models for the five wells in the field. Individual well’s model in Prosper was exported to GAP and simulations were run in GAP for the field network system. GAP simulations were run in two cases: case 1 comprises ESP simulation without optimization while case 2 comprises ESP simulation with optimization. For case 1, fixed values of ESP frequency were selected for each well and the GAP software calculates the production rates from the wells in the network accruing from the ESP frequencies inputted. For case 2, there was no input ESP frequency as the GAP software was allowed to calculate based on optimization algorithms, the best suitable ESP frequencies for each well in the field that will lead to the maximum total oil production in the field network while honouring the operational constraint imposed on the systems in the field. From the results, it was realized that at the basis of well, the higher the ESP frequency, the higher the well’s production rates. Sensitivities on the effects of separator pressure on production rates show that separator pressures affect the well’s productions rates. A reduction in separator pressure from 200 psig to 80 psig led to a 1.69% increase in field oil rate. Comparison of results for case 1 and case 2 showed that ESP field network simulation with optimization yields had a higher field production rate than ESP field network simulations without optimization. There was an increase in oil rate of 1.16% and 2.66% for constraints 1 and 2 when ESP simulation was done with optimization rather than without optimization. Also, simulation with optimization comes with higher pump efficiency than simulation without optimization.
基金supported by the Government of Perm Krai,Research Project No.С-26/510。
文摘A new integrated oil production enhancement technology based on water-flooding energy recovery is proposed.After providing an extensive review of the existing scientific and technical literature on this subject,the proposed integrated technology is described together with the related process flow diagram,the criteria used to select a tar-get facility for its implementation and the outcomes of the laboratory studies conducted to analyze emulsion formation and separation kinetics.Moreover,the outcomes of numerical simulations performed using Ansys CFX software are also presented.According to these results,using the proposed approach the incremental oil production may reach 1.2 t/day(with a 13%increase)and more,even at low flow rates(less than 10 t/day),thereby providing evidence for the benefits associated with this integrated technology.
文摘Electric submersible pumps account for a considerable proportion in the development of the Bohai Oilfield. Improving the system efficiency of the electric submersible pump wells, ensuring that the units operate in the high-efficiency zone, is essential. Analysis shows that the efficiency of the electric submersible pump system depends on the wear and tear of each component of the submersible pump equipment, the setting of operational parameters, and more importantly, the production status and daily management level of the oil well. Therefore, improving the structural performance of the submersible pump product, optimizing the parameters setting of the oil well, strengthening daily management, establishing a scientific management system, and improving the production management process and system can effectively improve the production efficiency and economic benefits of the oil well, and further achieve the goal of energy saving and emission reduction. In addition, it is necessary to actively promote the concept and technology of energy saving and emission reduction, encourage oilfield enterprises to explore effective measures to reduce the energy consumption of the electric submersible pump system by strengthening the scientific management system, and achieve a green, low-carbon, and high-quality development of oilfield production to achieve the unity of economic benefits, social benefits, and environmental benefits. This article applies the above measures in the P oilfield to achieve energy optimization of submersible electric pump systems, reducing the daily power consumption of single well submersible electric pump systems by 371 kWh per day, increasing the submersible electric pump's lifespan by 200 days, generating considerable project benefits.