In order to make equipment run safely, economically and continuously, some new maintenance models were put forward to improve the equipment after-sale maintenance service, such as E-maintenance, third-party maintenanc...In order to make equipment run safely, economically and continuously, some new maintenance models were put forward to improve the equipment after-sale maintenance service, such as E-maintenance, third-party maintenance, etc. To certain extent, the models solved the problem of the distance between the manufacturer and customer and the dispersion of the maintenance technologies, however, those resources are still widely distributed and do not collaborate efficiently. In this paper, a network-based collaborative maintenance service model was proposed for after-sales equipment to solve the problem of maintenance resources integration. Concretely, equipment designers, maintainers, spare parts suppliers and maintenance experts were grouped together to establish dynamic alliance. The leader of the alliance is the manufacturer under guaranty period or equipment user exceeding the guaranty period. The process of maintenance service was divided into three stages which are fault diagnosis, maintenance decision and maintenance implementation. The sub-alliances were established to carry out maintenance work at each stage. In addition, the business process of network-based collaborative maintenance was analyzed and collaborative business system for equipment's after-sales collaborative maintenance service was designed. In the end, an informational economics model of network-based collaborative maintenance was established to demonstrate the effectiveness of this maintenance model.展开更多
The infaunal polychaete Perinereis aibuhitensis Grube, distributes widelyalong Asian coasts and estuaries. In this research the particle reworking function of P.aibuhitensis was investigated in Beitang Estuary, Tianji...The infaunal polychaete Perinereis aibuhitensis Grube, distributes widelyalong Asian coasts and estuaries. In this research the particle reworking function of P.aibuhitensis was investigated in Beitang Estuary, Tianjin. The result showed that P.aibuhitensis displayed significant particle mixing function, in which small grain sizesediment particles were mixed more than the large size ones. Some small grain sizesediment particles could be ingested by P. aibuhitensis and egested with fecal pellets.展开更多
Intensive mid-Neoproterozoic magmatism is the salient feature of the Yangtze Block,preserving abundant information about crustal reworking and growth.Zircon U-Pb-Lu-Hf isotope analysis was performed on material from t...Intensive mid-Neoproterozoic magmatism is the salient feature of the Yangtze Block,preserving abundant information about crustal reworking and growth.Zircon U-Pb-Lu-Hf isotope analysis was performed on material from the Feidong Complex(FDC)and Zhangbaling Group(ZBLG)of the Zhangbaling Uplift,in order to determine the age and magmatic source of the Neoproterozoic igneous rocks as well as the detrital provenance for the sedimentary rocks,to further provide important data for understanding the mid-Neoproterozoic crustal evolution of the Northeast Yangtze Block.The amphibolite and gneissic granites in the Feidong Complex(FDC)gave similar protolith ages of 782-776 Ma.The synmagmatic zircons exhibited variable negativeεHf(t)values of-26.9 to-8.3.Early(ca.2.4 Ga)to late Paleoproterozoic(ca.2.0-1.9 Ga)inherited zircons were found in the gneissic monzogranite,with negativeεHf(t)values of-11.2 to-7.2,indicating strong reworking of the ancient crustal materials of the Northeast Yangtze Block.Whereas the amphibolites represent minor crustal growth through emplacement of continental rifting-related mafic magmas.The quartz-keratophyres in the Xileng Formation of the ZBLG in contrast systematically yield young protolith crystallization ages of 754-727 Ma with highεHf(t)values of-2.0 to+5.6,indicating their derivation from the reworking of juvenile crustal materials.The detrital zircons from the metasiltstone in the Beijiangjun Formation yield variable^(206)Pb/^(238)U ages(871-644 Ma)with a peak age at 741±11 Ma andεHf(t)values of-4.3 to+5.3,which is consistent with those of the Xileng Formation,but distinct from the FDC,indicating that the provenance of the metasiltstone is primarily the underlying Xileng Formation.The mid-Neoproterozoic igneous and sedimentary rocks of the Zhangbaling Uplift were products from continental rifting zones along the northern margin of the Yangtze Block,situated in different positions from the Susong Complex and the Haizhou Group.The transition from ancient to juvenile crustal sources for felsic magmatic rocks is attributed to gradually increased crustal extension during continental rifting.展开更多
Thallium (Tl) is a dispersed element and it seldom occurs in the form of independent minerals. So the element is hard to form any independent deposit. The world annual production of Tl is about 13 ton, most of which i...Thallium (Tl) is a dispersed element and it seldom occurs in the form of independent minerals. So the element is hard to form any independent deposit. The world annual production of Tl is about 13 ton, most of which is recovered as by\|product from non\|ferrous metal metallurgical products. Reported in this paper is the only large\|sized independent Tl deposit in the world, of which the Tl ores can be mined, ore\|dressed and smelted independently. Bio\|enrichment and hydrothermal reworking are the two important metallogenic mechanisms of this Tl deposit. This paper will give a discussion to the Lanmuchang Tl deposit in the following respects including its geological characteristics, element association of Tl, Hg, As and Au and W, sulfur isotopic composition, involvement of hallogens in metallogenesis and the metallogenic models.展开更多
The contribution of benthic foraminifera to sediment bioturbation has widely been overlooked despite their huge abundance in intertidal soft sediments. In this preliminary study, we specifically chose to focus on two ...The contribution of benthic foraminifera to sediment bioturbation has widely been overlooked despite their huge abundance in intertidal soft sediments. In this preliminary study, we specifically chose to focus on two key species of benthic foraminifera in temperate intertidal mudflats, <i><span style="font-size:12px;font-family:Verdana;">Quinqueloculina seminula</span></i><span style="font-size:12px;font-family:Verdana;"> and </span><i><span style="font-size:12px;font-family:Verdana;">Ammonia</span></i> <i><span style="font-size:12px;font-family:Verdana;">tepida</span></i><span style="font-size:12px;font-family:Verdana;">, and first experimentally investigated their individual movements at the sediment surface. We subsequently derived from these observations the individual-level surface sediment reworking rates, and used the actual abundance of these species to extrapolate these rates at the population level. Individual surface sediment reworking rates </span><i><span style="font-size:12px;font-family:Verdana;">SSRR</span><sub><span style="font-size:12px;font-family:Verdana;">i</span></sub></i><span style="font-size:12px;font-family:Verdana;"> ranged between 0.13 and 0.32 cm<sup>2</sup><span style="white-space:nowrap;">·</span></span><span style="font-size:12px;"><sup><span style="font-family:Verdana;"></span></sup></span><span style="font-size:12px;font-family:Verdana;">ind</span><span style="font-family:Verdana;font-size:8.33333px;"><sup>-1</sup><span style="white-space:nowrap;">·</span></span><span style="font-size:12px;font-family:Verdana;">day<sup>-1</sup></span> <span style="font-size:12px;font-family:Verdana;">for</span><span style="font-size:10pt;font-family:;" "=""> <i><span style="font-size:12px;font-family:Verdana;">Q. seminula</span></i><span style="font-size:12px;font-family:Verdana;">, and between 0.12 and 0.28 cm<sup>2</sup><span style="white-space:nowrap;">·</span></span><span style="font-size:12px;font-family:Verdana;">ind<sup>-1</sup><span style="white-space:nowrap;">·</span></span><span style="font-size:12px;font-family:Verdana;">day<sup>-1</sup></span><span style="font-size:12px;font-family:Verdana;"> for </span><i><span style="font-size:12px;font-family:Verdana;">A. tepida</span></i><span style="font-size:12px;font-family:Verdana;">. Population-level surface sediment reworking rates were subsequently estimated as ranging between 11,484 and 28,710 cm<sup>2</sup><span style="white-space:nowrap;">·</span></span><span style="font-size:12px;font-family:Verdana;">m<sup>-2</sup><span style="white-space:nowrap;">·</span></span><span style="font-size:12px;font-family:Verdana;">day<sup>-1</sup></span><span style="font-size:12px;font-family:Verdana;"> for </span><i><span style="font-size:12px;font-family:Verdana;">Q. seminula</span></i><span style="font-size:12px;font-family:Verdana;"> and 27,876 and 65,044 cm<sup>2</sup><span style="white-space:nowrap;">·</span></span><span style="font-size:12px;font-family:Verdana;">m<sup>-2</sup><span style="white-space:nowrap;">·</span></span><span style="font-size:12px;font-family:Verdana;">day<sup>-1</sup></span><span style="font-size:12px;font-family:Verdana;"> for </span><i><span style="font-size:12px;font-family:Verdana;">A. tepida</span></i><span style="font-size:12px;font-family:Verdana;">. Noticeably, these reworking rates are comparable to, and eventually even higher than, the rates reported in the literature for populations of intertidal macro-invertebrates, such as the annelid polychaete </span><i><span style="font-size:12px;font-family:Verdana;">Melinna palmata</span></i><span style="font-size:12px;font-family:Verdana;"> and the bivalve </span><i><span style="font-size:12px;font-family:Verdana;">Abra</span></i> <i><span style="font-size:12px;font-family:Verdana;">ovata</span></i><span style="font-size:12px;font-family:Verdana;">. Taken together these results suggest that despite their minute size intertidal benthic foraminifera are, thanks to their abundance, non-negligible contributors to the reworking of surface sediment, and may then play an unanticipated role in the benthic ecosystem functioning, through e.g. the enhancement of fluxes at the sediment-water interface.</span></span>展开更多
In intercontinental trade and economics goods are bought from a global supplier.On occasion,the expected lot may include a fraction of defective items.These imperfect items still have worth and can be sold to customer...In intercontinental trade and economics goods are bought from a global supplier.On occasion,the expected lot may include a fraction of defective items.These imperfect items still have worth and can be sold to customers after repair.It is cost-effective and sustainable to rework such items in nearby repair workshops rather than return them.The reworked items can be returned from the workshop to the buyer when shortages are equal to the quantity of imperfect items.In the meantime,the supplier correspondingly deals a multi-period delay-in-payments strategy with purchaser.The entire profit has been maximized with paybacks for interim financing.This study aims to develop a synergic inventory model to get the most profit by making an allowance for reworking,multi-period delay-in-payments policy,and shortages.The findings of the proposed model augment inventory management performance by monitoring cycle time as well as fraction of phase with optimistic inventory for a supply chain.The results demonstrate that profit is smaller if the permitted period given by supplier to buyer is equal to or greater than the cycle time,and profit is greater if the permitted period is smaller than the cycle time.The algebraic method is engaged to make a closed system optimum solution.The mathematical experiment of this study is constructed to provide management insights and tangible practices.展开更多
The rapid rise and development of the computer industry in China has promoted the production of and demand for computer diskettes. China, with over 30 diskette production lines and an annual production of 2 billion di...The rapid rise and development of the computer industry in China has promoted the production of and demand for computer diskettes. China, with over 30 diskette production lines and an annual production of 2 billion diskettes, including some for export, has become the biggest diskette producing country in the world. However, imported diskettes, especially high grade brands, enjoy a good market here. That’s why many world renowned diskette展开更多
As a part of the product development process, the after-sales services are not only a source of innovation, but also they benefit from value creation through new managerial methodologies for the achievement of competi...As a part of the product development process, the after-sales services are not only a source of innovation, but also they benefit from value creation through new managerial methodologies for the achievement of competitive advantage and customer satisfaction. The objective of the paper is to further understand value creation for the after-sales services. We present the case of the creation of a new business for the after-sales services for the entrance into a new market. The new business is created by two gurus in the aerospace industry. A typology of guidelines is derived, based on organizational and strategic perspectives, for the after-sales services value creation and the guidelines for the creation of a new business as well as for the entrance of into a new market are presented.展开更多
The greenstone belt and metamorphosed microclastic rock\|type superlarge gold deposits in China are hosted in metamorphic rocks and later intrusive bodies. Sedimentation, regional metamorphism and mineralization contr...The greenstone belt and metamorphosed microclastic rock\|type superlarge gold deposits in China are hosted in metamorphic rocks and later intrusive bodies. Sedimentation, regional metamorphism and mineralization contributed a lot to the formation of the deposits, so did remelting magmatic process to some deposits, but the deposits were finally formed by reworking processes. The key factor leading to the formation of superlarge gold deposits is the reworking intensity, which for superlarge gold deposits is reflected by the large\|scale reworked source rocks and even ore materials of various sources, strongly oxidized ore\|forming fluids with a long and repeated active history and stable geothermal heat current. The factor which decides the reworking intensity is the network consisting of structures of different classes.展开更多
The Central Asian Orogenic Belt(CAOB)is one of the largest Phanerozoic accretionary orogen.(Windley et al.,1990,2007;Jahn et al.,2000a,b,c;Yakubchuk,2002,2004;Xiao et al.,2003,2004).It is the optimal study area fo...The Central Asian Orogenic Belt(CAOB)is one of the largest Phanerozoic accretionary orogen.(Windley et al.,1990,2007;Jahn et al.,2000a,b,c;Yakubchuk,2002,2004;Xiao et al.,2003,2004).It is the optimal study area for revealing the accretion and reworking processes of the continental crust.The Khanka Massif is located in the most eastern part of the CAOB,and mainly crops out in the territory of Russia,with a small segment in NE China.In addition,a large number of multi-stage granitic rocks are formed in geological evolution in this area,recording amounts of information about crustal accretion and reworking processes(De Paolo et al.,1991;Rudnick,1995;Wu et al.,2011).In view of this,this paper uses the spatial-temporal variations of trace elements and zircon Hf isotopic compositions of phanerozoic granitoids within the Khanka Massif as a case to reveal the crustal accretion and reworking processes of micro continental massifs from the orogenic belt,further to understand the formation and evolution processes and mechanisms of the global continental crust.According to the statistics of zircon U-Pb ages of granitoids in the Khanka Massif,indicate that the granitic magmatisms in the Khanka Massif have eleven peaks:492 Ma,460 Ma,445Ma,430Ma,425Ma,302Ma,287Ma,258Ma,249 Ma,216Ma and 213Ma,it can be divided into eight main stages:Late Cambrian,Middle-Late Ordovician,Middle Silurian,Late Carboniferous,EarlyPermian,Middle-Late Permian—Early Triassic,Late Triassic-Early Jurassic,Early Cretaceous.The Phanerozoic granitoids in Khanka massif are selectedinthispaperasasuiteof granodiorite-monzogranite-syenogranite.TheSi O2contents of the Phanerozoic granitoids exceed 65%,and has high Al2O3,low Mg#,TFe2O3,Cr,Co and Ni contents.This suggests that mixture with mantle-derived magma did not occur,and it should be a typical crustal source(Lu and Xu,2011).Combined with evident characteristics of light rare-earth elements(LREEs)and large ion lithophile elements(LILEs)enrichment,and heavy rare-earth elements(HREEs)and high field-strength elements(HFSEs)loss,we suggest that the primary magma was derived by partial melting of lower crustal material(Xu et al.,2009),and geochemical properties of the Phanerozoic granitoids essentially reflect the nature of the magmatic source region.According to the temporal variation of zircon Hf isotopic data of Phanerozoic granitioids,zircon Hf isotopic compositions of Phanerozoic granitoids have a obvious correlation with age.With the decrease of formation time ofthePhanerozoicgranitoids(Late Cambrian;iddle-LateOrdovician;iddle Silurian;arlyPermian;iddle-LatePermian–Early Triassic;ate Triassic-Early Jurassic),εHf(t)values of zircons gradually increase,whereas their TDM2 ages gradually decrease(Paleoproterozoic–Neoproterozoic),suggesting that the generation of granitic magmas from the Khanka Massif could have experienced the change from the melting of the ancient crust to the juvenile crust during Paleozoic to Mesozoic.According to the sample location,it can be found thatεHf(t)values of Phanerozoic granitoids have the tendency to decrease with latitude increase,showing that components of the ancient continental crust gradually increase from south to north.However,at the same latitude range,theεHf(t)values of Phanerozoic granitoids also inconsistent.Taken together,these differences reveal the horizontal and vertical heterogeneity of the lower continental crust within the Khanka Massif.According to the relative probability of two-stage model(TDM2)ages of zircon Hf isotope from Phanerozoic granitoids within the Khanka massif,it could be divided into three stages:(1)Late Paleoproterozoic(2)Mesoproterozoic(3)Neoproterozoic.It reveals that the main part of the continental crust within the Khanka MassifwereformedinLate Paleoproterozoic–Neoproterozoic.The Phanerozoic granitoids in the Khanka Massif reworked from the source rockswithdifferent ages(Paleoproterozoic–Mesoproterozoic–Neoproterozoic).展开更多
Gold deposits in intrusive masses include the veinlet dissemination, quartz vein andveinlet dissemination + vein types . They are distributed in fracture zones along the endocontact zone of a batholith or in the centr...Gold deposits in intrusive masses include the veinlet dissemination, quartz vein andveinlet dissemination + vein types . They are distributed in fracture zones along the endocontact zone of a batholith or in the centre and edge of a stock. The metallogenic epochs are Yenshanian, Hercynian, Archean, Proteredc and Himalaysn. The gold deposits are characterizedby a big difference in time span between gold mineralization and the formation of host masses.Ore-forming materials were derived from the masses and auriferous strata and ore-forming fluidscame from meteoric and formation waters. When circulating water was heated by ascendingheat flow, gold would be extracted, concentrated and transported from auriferous rocks andthen precipitated in the masses during the late tectonic movement. Finally gold deceits wereformed in the intrusive masses.展开更多
Most gold deposits in intrusive rocks were formed as a result of reworking processes.The intrusive rocks containing gold deposits and consisting of ultramafic-mafic, intermediate-acid and alkaline rocks of the Archean...Most gold deposits in intrusive rocks were formed as a result of reworking processes.The intrusive rocks containing gold deposits and consisting of ultramafic-mafic, intermediate-acid and alkaline rocks of the Archean, Proterozoic, Caledonian, Hercynian and Yenshanian periods occur in cratons, activated zones of cratons and fold belts. Among them, ultramafic-mafic rocks, diorite, alkaline rocks, and anorthosite are products of remelting in the mantle or mantle-crust or mantle with crustal contamination. However, auriferous intermediate-acid rocks are products of metasomatic-remelting in auriferous volcanic rocks or auriferous volcano-sedimentary rocks in the deep crust.展开更多
基金supported by National Natural Science Foundation of China (Grant No. 70301012)National Hi-tech Research and Development Program of China (863 Program, Grant No. 2006AA04Z369-1)Innovative Talent Project of the Third Stage of "211" Project, Chongqing University, China (Grant No. S-09107)
文摘In order to make equipment run safely, economically and continuously, some new maintenance models were put forward to improve the equipment after-sale maintenance service, such as E-maintenance, third-party maintenance, etc. To certain extent, the models solved the problem of the distance between the manufacturer and customer and the dispersion of the maintenance technologies, however, those resources are still widely distributed and do not collaborate efficiently. In this paper, a network-based collaborative maintenance service model was proposed for after-sales equipment to solve the problem of maintenance resources integration. Concretely, equipment designers, maintainers, spare parts suppliers and maintenance experts were grouped together to establish dynamic alliance. The leader of the alliance is the manufacturer under guaranty period or equipment user exceeding the guaranty period. The process of maintenance service was divided into three stages which are fault diagnosis, maintenance decision and maintenance implementation. The sub-alliances were established to carry out maintenance work at each stage. In addition, the business process of network-based collaborative maintenance was analyzed and collaborative business system for equipment's after-sales collaborative maintenance service was designed. In the end, an informational economics model of network-based collaborative maintenance was established to demonstrate the effectiveness of this maintenance model.
基金supported by the Chinese Natural Science Foundation(Funding Numbers:41303070,21307045)
文摘The infaunal polychaete Perinereis aibuhitensis Grube, distributes widelyalong Asian coasts and estuaries. In this research the particle reworking function of P.aibuhitensis was investigated in Beitang Estuary, Tianjin. The result showed that P.aibuhitensis displayed significant particle mixing function, in which small grain sizesediment particles were mixed more than the large size ones. Some small grain sizesediment particles could be ingested by P. aibuhitensis and egested with fecal pellets.
基金supported by funds from the Natural Science Foundation of China(41772228)。
文摘Intensive mid-Neoproterozoic magmatism is the salient feature of the Yangtze Block,preserving abundant information about crustal reworking and growth.Zircon U-Pb-Lu-Hf isotope analysis was performed on material from the Feidong Complex(FDC)and Zhangbaling Group(ZBLG)of the Zhangbaling Uplift,in order to determine the age and magmatic source of the Neoproterozoic igneous rocks as well as the detrital provenance for the sedimentary rocks,to further provide important data for understanding the mid-Neoproterozoic crustal evolution of the Northeast Yangtze Block.The amphibolite and gneissic granites in the Feidong Complex(FDC)gave similar protolith ages of 782-776 Ma.The synmagmatic zircons exhibited variable negativeεHf(t)values of-26.9 to-8.3.Early(ca.2.4 Ga)to late Paleoproterozoic(ca.2.0-1.9 Ga)inherited zircons were found in the gneissic monzogranite,with negativeεHf(t)values of-11.2 to-7.2,indicating strong reworking of the ancient crustal materials of the Northeast Yangtze Block.Whereas the amphibolites represent minor crustal growth through emplacement of continental rifting-related mafic magmas.The quartz-keratophyres in the Xileng Formation of the ZBLG in contrast systematically yield young protolith crystallization ages of 754-727 Ma with highεHf(t)values of-2.0 to+5.6,indicating their derivation from the reworking of juvenile crustal materials.The detrital zircons from the metasiltstone in the Beijiangjun Formation yield variable^(206)Pb/^(238)U ages(871-644 Ma)with a peak age at 741±11 Ma andεHf(t)values of-4.3 to+5.3,which is consistent with those of the Xileng Formation,but distinct from the FDC,indicating that the provenance of the metasiltstone is primarily the underlying Xileng Formation.The mid-Neoproterozoic igneous and sedimentary rocks of the Zhangbaling Uplift were products from continental rifting zones along the northern margin of the Yangtze Block,situated in different positions from the Susong Complex and the Haizhou Group.The transition from ancient to juvenile crustal sources for felsic magmatic rocks is attributed to gradually increased crustal extension during continental rifting.
文摘Thallium (Tl) is a dispersed element and it seldom occurs in the form of independent minerals. So the element is hard to form any independent deposit. The world annual production of Tl is about 13 ton, most of which is recovered as by\|product from non\|ferrous metal metallurgical products. Reported in this paper is the only large\|sized independent Tl deposit in the world, of which the Tl ores can be mined, ore\|dressed and smelted independently. Bio\|enrichment and hydrothermal reworking are the two important metallogenic mechanisms of this Tl deposit. This paper will give a discussion to the Lanmuchang Tl deposit in the following respects including its geological characteristics, element association of Tl, Hg, As and Au and W, sulfur isotopic composition, involvement of hallogens in metallogenesis and the metallogenic models.
文摘The contribution of benthic foraminifera to sediment bioturbation has widely been overlooked despite their huge abundance in intertidal soft sediments. In this preliminary study, we specifically chose to focus on two key species of benthic foraminifera in temperate intertidal mudflats, <i><span style="font-size:12px;font-family:Verdana;">Quinqueloculina seminula</span></i><span style="font-size:12px;font-family:Verdana;"> and </span><i><span style="font-size:12px;font-family:Verdana;">Ammonia</span></i> <i><span style="font-size:12px;font-family:Verdana;">tepida</span></i><span style="font-size:12px;font-family:Verdana;">, and first experimentally investigated their individual movements at the sediment surface. We subsequently derived from these observations the individual-level surface sediment reworking rates, and used the actual abundance of these species to extrapolate these rates at the population level. Individual surface sediment reworking rates </span><i><span style="font-size:12px;font-family:Verdana;">SSRR</span><sub><span style="font-size:12px;font-family:Verdana;">i</span></sub></i><span style="font-size:12px;font-family:Verdana;"> ranged between 0.13 and 0.32 cm<sup>2</sup><span style="white-space:nowrap;">·</span></span><span style="font-size:12px;"><sup><span style="font-family:Verdana;"></span></sup></span><span style="font-size:12px;font-family:Verdana;">ind</span><span style="font-family:Verdana;font-size:8.33333px;"><sup>-1</sup><span style="white-space:nowrap;">·</span></span><span style="font-size:12px;font-family:Verdana;">day<sup>-1</sup></span> <span style="font-size:12px;font-family:Verdana;">for</span><span style="font-size:10pt;font-family:;" "=""> <i><span style="font-size:12px;font-family:Verdana;">Q. seminula</span></i><span style="font-size:12px;font-family:Verdana;">, and between 0.12 and 0.28 cm<sup>2</sup><span style="white-space:nowrap;">·</span></span><span style="font-size:12px;font-family:Verdana;">ind<sup>-1</sup><span style="white-space:nowrap;">·</span></span><span style="font-size:12px;font-family:Verdana;">day<sup>-1</sup></span><span style="font-size:12px;font-family:Verdana;"> for </span><i><span style="font-size:12px;font-family:Verdana;">A. tepida</span></i><span style="font-size:12px;font-family:Verdana;">. Population-level surface sediment reworking rates were subsequently estimated as ranging between 11,484 and 28,710 cm<sup>2</sup><span style="white-space:nowrap;">·</span></span><span style="font-size:12px;font-family:Verdana;">m<sup>-2</sup><span style="white-space:nowrap;">·</span></span><span style="font-size:12px;font-family:Verdana;">day<sup>-1</sup></span><span style="font-size:12px;font-family:Verdana;"> for </span><i><span style="font-size:12px;font-family:Verdana;">Q. seminula</span></i><span style="font-size:12px;font-family:Verdana;"> and 27,876 and 65,044 cm<sup>2</sup><span style="white-space:nowrap;">·</span></span><span style="font-size:12px;font-family:Verdana;">m<sup>-2</sup><span style="white-space:nowrap;">·</span></span><span style="font-size:12px;font-family:Verdana;">day<sup>-1</sup></span><span style="font-size:12px;font-family:Verdana;"> for </span><i><span style="font-size:12px;font-family:Verdana;">A. tepida</span></i><span style="font-size:12px;font-family:Verdana;">. Noticeably, these reworking rates are comparable to, and eventually even higher than, the rates reported in the literature for populations of intertidal macro-invertebrates, such as the annelid polychaete </span><i><span style="font-size:12px;font-family:Verdana;">Melinna palmata</span></i><span style="font-size:12px;font-family:Verdana;"> and the bivalve </span><i><span style="font-size:12px;font-family:Verdana;">Abra</span></i> <i><span style="font-size:12px;font-family:Verdana;">ovata</span></i><span style="font-size:12px;font-family:Verdana;">. Taken together these results suggest that despite their minute size intertidal benthic foraminifera are, thanks to their abundance, non-negligible contributors to the reworking of surface sediment, and may then play an unanticipated role in the benthic ecosystem functioning, through e.g. the enhancement of fluxes at the sediment-water interface.</span></span>
文摘In intercontinental trade and economics goods are bought from a global supplier.On occasion,the expected lot may include a fraction of defective items.These imperfect items still have worth and can be sold to customers after repair.It is cost-effective and sustainable to rework such items in nearby repair workshops rather than return them.The reworked items can be returned from the workshop to the buyer when shortages are equal to the quantity of imperfect items.In the meantime,the supplier correspondingly deals a multi-period delay-in-payments strategy with purchaser.The entire profit has been maximized with paybacks for interim financing.This study aims to develop a synergic inventory model to get the most profit by making an allowance for reworking,multi-period delay-in-payments policy,and shortages.The findings of the proposed model augment inventory management performance by monitoring cycle time as well as fraction of phase with optimistic inventory for a supply chain.The results demonstrate that profit is smaller if the permitted period given by supplier to buyer is equal to or greater than the cycle time,and profit is greater if the permitted period is smaller than the cycle time.The algebraic method is engaged to make a closed system optimum solution.The mathematical experiment of this study is constructed to provide management insights and tangible practices.
文摘The rapid rise and development of the computer industry in China has promoted the production of and demand for computer diskettes. China, with over 30 diskette production lines and an annual production of 2 billion diskettes, including some for export, has become the biggest diskette producing country in the world. However, imported diskettes, especially high grade brands, enjoy a good market here. That’s why many world renowned diskette
文摘As a part of the product development process, the after-sales services are not only a source of innovation, but also they benefit from value creation through new managerial methodologies for the achievement of competitive advantage and customer satisfaction. The objective of the paper is to further understand value creation for the after-sales services. We present the case of the creation of a new business for the after-sales services for the entrance into a new market. The new business is created by two gurus in the aerospace industry. A typology of guidelines is derived, based on organizational and strategic perspectives, for the after-sales services value creation and the guidelines for the creation of a new business as well as for the entrance of into a new market are presented.
文摘The greenstone belt and metamorphosed microclastic rock\|type superlarge gold deposits in China are hosted in metamorphic rocks and later intrusive bodies. Sedimentation, regional metamorphism and mineralization contributed a lot to the formation of the deposits, so did remelting magmatic process to some deposits, but the deposits were finally formed by reworking processes. The key factor leading to the formation of superlarge gold deposits is the reworking intensity, which for superlarge gold deposits is reflected by the large\|scale reworked source rocks and even ore materials of various sources, strongly oxidized ore\|forming fluids with a long and repeated active history and stable geothermal heat current. The factor which decides the reworking intensity is the network consisting of structures of different classes.
文摘The Central Asian Orogenic Belt(CAOB)is one of the largest Phanerozoic accretionary orogen.(Windley et al.,1990,2007;Jahn et al.,2000a,b,c;Yakubchuk,2002,2004;Xiao et al.,2003,2004).It is the optimal study area for revealing the accretion and reworking processes of the continental crust.The Khanka Massif is located in the most eastern part of the CAOB,and mainly crops out in the territory of Russia,with a small segment in NE China.In addition,a large number of multi-stage granitic rocks are formed in geological evolution in this area,recording amounts of information about crustal accretion and reworking processes(De Paolo et al.,1991;Rudnick,1995;Wu et al.,2011).In view of this,this paper uses the spatial-temporal variations of trace elements and zircon Hf isotopic compositions of phanerozoic granitoids within the Khanka Massif as a case to reveal the crustal accretion and reworking processes of micro continental massifs from the orogenic belt,further to understand the formation and evolution processes and mechanisms of the global continental crust.According to the statistics of zircon U-Pb ages of granitoids in the Khanka Massif,indicate that the granitic magmatisms in the Khanka Massif have eleven peaks:492 Ma,460 Ma,445Ma,430Ma,425Ma,302Ma,287Ma,258Ma,249 Ma,216Ma and 213Ma,it can be divided into eight main stages:Late Cambrian,Middle-Late Ordovician,Middle Silurian,Late Carboniferous,EarlyPermian,Middle-Late Permian—Early Triassic,Late Triassic-Early Jurassic,Early Cretaceous.The Phanerozoic granitoids in Khanka massif are selectedinthispaperasasuiteof granodiorite-monzogranite-syenogranite.TheSi O2contents of the Phanerozoic granitoids exceed 65%,and has high Al2O3,low Mg#,TFe2O3,Cr,Co and Ni contents.This suggests that mixture with mantle-derived magma did not occur,and it should be a typical crustal source(Lu and Xu,2011).Combined with evident characteristics of light rare-earth elements(LREEs)and large ion lithophile elements(LILEs)enrichment,and heavy rare-earth elements(HREEs)and high field-strength elements(HFSEs)loss,we suggest that the primary magma was derived by partial melting of lower crustal material(Xu et al.,2009),and geochemical properties of the Phanerozoic granitoids essentially reflect the nature of the magmatic source region.According to the temporal variation of zircon Hf isotopic data of Phanerozoic granitioids,zircon Hf isotopic compositions of Phanerozoic granitoids have a obvious correlation with age.With the decrease of formation time ofthePhanerozoicgranitoids(Late Cambrian;iddle-LateOrdovician;iddle Silurian;arlyPermian;iddle-LatePermian–Early Triassic;ate Triassic-Early Jurassic),εHf(t)values of zircons gradually increase,whereas their TDM2 ages gradually decrease(Paleoproterozoic–Neoproterozoic),suggesting that the generation of granitic magmas from the Khanka Massif could have experienced the change from the melting of the ancient crust to the juvenile crust during Paleozoic to Mesozoic.According to the sample location,it can be found thatεHf(t)values of Phanerozoic granitoids have the tendency to decrease with latitude increase,showing that components of the ancient continental crust gradually increase from south to north.However,at the same latitude range,theεHf(t)values of Phanerozoic granitoids also inconsistent.Taken together,these differences reveal the horizontal and vertical heterogeneity of the lower continental crust within the Khanka Massif.According to the relative probability of two-stage model(TDM2)ages of zircon Hf isotope from Phanerozoic granitoids within the Khanka massif,it could be divided into three stages:(1)Late Paleoproterozoic(2)Mesoproterozoic(3)Neoproterozoic.It reveals that the main part of the continental crust within the Khanka MassifwereformedinLate Paleoproterozoic–Neoproterozoic.The Phanerozoic granitoids in the Khanka Massif reworked from the source rockswithdifferent ages(Paleoproterozoic–Mesoproterozoic–Neoproterozoic).
文摘Gold deposits in intrusive masses include the veinlet dissemination, quartz vein andveinlet dissemination + vein types . They are distributed in fracture zones along the endocontact zone of a batholith or in the centre and edge of a stock. The metallogenic epochs are Yenshanian, Hercynian, Archean, Proteredc and Himalaysn. The gold deposits are characterizedby a big difference in time span between gold mineralization and the formation of host masses.Ore-forming materials were derived from the masses and auriferous strata and ore-forming fluidscame from meteoric and formation waters. When circulating water was heated by ascendingheat flow, gold would be extracted, concentrated and transported from auriferous rocks andthen precipitated in the masses during the late tectonic movement. Finally gold deceits wereformed in the intrusive masses.
文摘Most gold deposits in intrusive rocks were formed as a result of reworking processes.The intrusive rocks containing gold deposits and consisting of ultramafic-mafic, intermediate-acid and alkaline rocks of the Archean, Proterozoic, Caledonian, Hercynian and Yenshanian periods occur in cratons, activated zones of cratons and fold belts. Among them, ultramafic-mafic rocks, diorite, alkaline rocks, and anorthosite are products of remelting in the mantle or mantle-crust or mantle with crustal contamination. However, auriferous intermediate-acid rocks are products of metasomatic-remelting in auriferous volcanic rocks or auriferous volcano-sedimentary rocks in the deep crust.