The purpose of this paper is to introduce new theoretical concepts as opposed to accepting the existence of dark entities, such as dark energy. This research sought to introduce a 2<sup>nd</sup> universal ...The purpose of this paper is to introduce new theoretical concepts as opposed to accepting the existence of dark entities, such as dark energy. This research sought to introduce a 2<sup>nd</sup> universal space-time constant, besides having a finite speed constant (speed of light in vacuum c). A finite universal age constant b is introduced. Namely, this paper shows that the changes in the Earth’s anomalistic year duration over time support the hypothesis of the age of the universe correlating with a maximum number of orbital revolutions constant. Neglecting the gravitational influence of other cosmological entities in the proximity of the Earth, the constant maximum number of revolutions is herewith determined solely by the Earth’s orbital revolutions around the Sun. The value of the universal age constant b is calculated to be around 13.8 billion orbital revolutions, derived out of an equation related to the changes in the Earth’s anomalistic year duration over time and the so-called Hubble tension. The above-mentioned calculated value b correlates well with the best fit to measured data of the cosmic microwave background radiation (CMBR) by the Planck spacecraft, the age of the observed universe is measured to be approximately 13.787 ± 0.020 billion years (2018 final data release). Developing a theory with this 2<sup>nd</sup> universal space-time constant b, being covariant with respect to the Lorentz transformations when time spans are large, gives results such as: A confirmation of the measured CMBR value of 13.787 ± 0.020 billion years. Correlating well with the observed expansion rate of the universe (dark energy). The universe’s expansion accelerating over the last four to five billion years.展开更多
A framework to estimate the mass of the universe from quarks is presented, taking spacetime into account. This is a link currently missing in our understanding of physics/science. The focus on mass-energy balance is a...A framework to estimate the mass of the universe from quarks is presented, taking spacetime into account. This is a link currently missing in our understanding of physics/science. The focus on mass-energy balance is aimed at finding a solution to the Cosmological Constant (CC) problem by attempting to quantize space-time and linking the vacuum energy density at the beginning of the universe and the current energy density. The CC problem is the famous disagreement of approximately 120 orders of magnitude between the theoretical energy density at the Planck scale and the indirectly measured cosmological energy density. Same framework is also used to determine the mass of the proton and neutron from first principles. The only input is the up quark (u-quark) mass, or precisely, the 1st generation quarks. The method assumes that the u-quark is twice as massive as the down-quark (d-quark). The gap equation is the starting point, introduced in its simplest form. The main idea is to assume that all the particles and fields in the unit universe are divided into quarks and everything else. Everything else means all fields and forces present in the universe. It is assumed that everything else can be “quark-quantized”;that is, assume that they can be quantized into similar sizeable u-quarks and/or it’s associated interactions and relations. The result is surprisingly almost as measured and known values. The proton structure and mass composition are also analysed, showing that it likely has more than 3 quarks and more than 3 valence quarks. It is also possible to estimate the percentage of dark matter, dark energy, ordinary matter, and anti-matter. Finally, the cosmological constant problem or puzzle is resolved by connecting the vacuum energy density of Quantum Field Theory (5.1E+96 kg/m<sup>3</sup>) and the energy density of General Relativity (1.04E−26 kg/m<sup>3</sup>). Upon maturation, this framework can serve as a bridging platform between Quantum Field Theory and General Relativity. Other aspects of natures’ field theories can be successfully ported to the platform. It also increases the chances of solving some of the unanswered questions in physics.展开更多
<p> Observing galaxies receding from each other, Hubble found the universe’s expansion in 1929. His law that gives the receding speed as a function of distance implies a factor called Hubble constant <em>...<p> Observing galaxies receding from each other, Hubble found the universe’s expansion in 1929. His law that gives the receding speed as a function of distance implies a factor called Hubble constant <em>H</em><sub><em>0</em></sub>. We want to validate our theoretical value of <em style="white-space:normal;">H</em><sub style="white-space:normal;"><em>0</em></sub> ≈ 72.09548580(32) km<span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">⋅</span></span></span></span></span>s<span style="white-space:nowrap;"><span style="white-space:nowrap;"><sup><span style="white-space:nowrap;"><span style="white-space:nowrap;">-</span></span></sup></span></span><sup>1</sup><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">⋅</span></span></span></span></span>MParsec<sup><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">-</span></span></span></span>1</sup> with a new cosmological model found in 2019. This model predicts what may look like two possible values of <em style="white-space:normal;">H</em><sub style="white-space:normal;"><em>0</em></sub>. According to this model, the correct equation of the apparent age of the universe gives ~ 14.14 billion years. In approximation, we get the well-known equation 1/<em style="white-space:normal;">H</em><sub style="white-space:normal;"><em>0</em></sub> ≈ 13.56 billion years. When we force these ages to fit the 1/<em style="white-space:normal;">H</em><sub style="white-space:normal;"><em>0</em></sub> formula, it gives two different Hubble constant values of ~69.2 and 72.1 km<span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">⋅</span></span></span></span></span></span>s<sup><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">-</span></span></span></span>1</sup><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">⋅</span><span style="white-space:nowrap;">sdot;</span></span></span></span></span>MParsec<sup><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">-</span></span></span></span>1</sup>. When we apply a theoretical correction factor of <em>η</em> ≈ 1.042516951 on the first value, both target the second one. We found 42 equations of <em style="white-space:normal;">H</em><sub style="white-space:normal;"><em>0</em></sub> linking different physics constants. Some are used to measure <em style="white-space:normal;">H</em><sub style="white-space:normal;"><em>0</em></sub> as a function of the average temperature<em> T</em> of the Cosmological Microwave Background and the universal gravitational constant <em>G</em>: </p> <p> <em>H</em><sub><em>0</em></sub> ≈ 72.06(90) km<span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">⋅</span></span></span></span>s<span style="vertical-align:super;white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">-</span></span></span><sup>1</sup><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">⋅</span></span></span></span>MParsec<sup><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">-</span></span></span>1</sup> from <em>T </em>by Cobra probe & Equation (16) </p> <p> <em>H</em><sub><em>0</em></sub> ≈ 71.95(50) km<span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">⋅</span></span></span></span>s<sup><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">-</span></span></span>1</sup><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">⋅</span></span></span></span>MParsec<sup><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">-</span></span></span>1 </sup>from<em> T</em> by Partridge & Equation (16) </p> <p> <em>H</em><sub><em>0</em></sub> ≈ 72.086(36) km<span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">⋅</span></span></span></span>s<sup><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">-</span></span></span>1</sup><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">⋅</span></span></span></span>MParsec<sup><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">-1 </span></span></span></sup>from <em>G</em> & Equation (34) </p> <p> <em>H</em><sub><em>0</em></sub> ≈ 72.105(36) km<span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">⋅</span></span></span></span>s<sup><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">-</span></span></span>1</sup><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">⋅</span></span></span></span>MParsec<sup><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">-</span></span></span>1</sup> from <em></em><em>G</em> & Equations (74), (75), or (76). With 508 published values, <em>H</em><sub><em>0</em></sub> ≈ 72.0957 ± 0.33 km<span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">⋅</span></span></span></span>s<sup><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">-</span></span></span>1</sup><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">⋅</span></span></span></span>MParsec<sup><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">-</span></span></span>1</sup> seems to be the “ideal” statistical result. It validates our model and our theoretical <em>H</em><sub><em>0</em></sub> value which are useful to find various interactions with the different constants. Our model also explains the ambiguity between the different universe’s age measurements and seems to unlock a tension between two <em>H</em><sub><em>0</em></sub> values. </p>展开更多
文摘The purpose of this paper is to introduce new theoretical concepts as opposed to accepting the existence of dark entities, such as dark energy. This research sought to introduce a 2<sup>nd</sup> universal space-time constant, besides having a finite speed constant (speed of light in vacuum c). A finite universal age constant b is introduced. Namely, this paper shows that the changes in the Earth’s anomalistic year duration over time support the hypothesis of the age of the universe correlating with a maximum number of orbital revolutions constant. Neglecting the gravitational influence of other cosmological entities in the proximity of the Earth, the constant maximum number of revolutions is herewith determined solely by the Earth’s orbital revolutions around the Sun. The value of the universal age constant b is calculated to be around 13.8 billion orbital revolutions, derived out of an equation related to the changes in the Earth’s anomalistic year duration over time and the so-called Hubble tension. The above-mentioned calculated value b correlates well with the best fit to measured data of the cosmic microwave background radiation (CMBR) by the Planck spacecraft, the age of the observed universe is measured to be approximately 13.787 ± 0.020 billion years (2018 final data release). Developing a theory with this 2<sup>nd</sup> universal space-time constant b, being covariant with respect to the Lorentz transformations when time spans are large, gives results such as: A confirmation of the measured CMBR value of 13.787 ± 0.020 billion years. Correlating well with the observed expansion rate of the universe (dark energy). The universe’s expansion accelerating over the last four to five billion years.
文摘A framework to estimate the mass of the universe from quarks is presented, taking spacetime into account. This is a link currently missing in our understanding of physics/science. The focus on mass-energy balance is aimed at finding a solution to the Cosmological Constant (CC) problem by attempting to quantize space-time and linking the vacuum energy density at the beginning of the universe and the current energy density. The CC problem is the famous disagreement of approximately 120 orders of magnitude between the theoretical energy density at the Planck scale and the indirectly measured cosmological energy density. Same framework is also used to determine the mass of the proton and neutron from first principles. The only input is the up quark (u-quark) mass, or precisely, the 1st generation quarks. The method assumes that the u-quark is twice as massive as the down-quark (d-quark). The gap equation is the starting point, introduced in its simplest form. The main idea is to assume that all the particles and fields in the unit universe are divided into quarks and everything else. Everything else means all fields and forces present in the universe. It is assumed that everything else can be “quark-quantized”;that is, assume that they can be quantized into similar sizeable u-quarks and/or it’s associated interactions and relations. The result is surprisingly almost as measured and known values. The proton structure and mass composition are also analysed, showing that it likely has more than 3 quarks and more than 3 valence quarks. It is also possible to estimate the percentage of dark matter, dark energy, ordinary matter, and anti-matter. Finally, the cosmological constant problem or puzzle is resolved by connecting the vacuum energy density of Quantum Field Theory (5.1E+96 kg/m<sup>3</sup>) and the energy density of General Relativity (1.04E−26 kg/m<sup>3</sup>). Upon maturation, this framework can serve as a bridging platform between Quantum Field Theory and General Relativity. Other aspects of natures’ field theories can be successfully ported to the platform. It also increases the chances of solving some of the unanswered questions in physics.
文摘<p> Observing galaxies receding from each other, Hubble found the universe’s expansion in 1929. His law that gives the receding speed as a function of distance implies a factor called Hubble constant <em>H</em><sub><em>0</em></sub>. We want to validate our theoretical value of <em style="white-space:normal;">H</em><sub style="white-space:normal;"><em>0</em></sub> ≈ 72.09548580(32) km<span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">⋅</span></span></span></span></span>s<span style="white-space:nowrap;"><span style="white-space:nowrap;"><sup><span style="white-space:nowrap;"><span style="white-space:nowrap;">-</span></span></sup></span></span><sup>1</sup><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">⋅</span></span></span></span></span>MParsec<sup><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">-</span></span></span></span>1</sup> with a new cosmological model found in 2019. This model predicts what may look like two possible values of <em style="white-space:normal;">H</em><sub style="white-space:normal;"><em>0</em></sub>. According to this model, the correct equation of the apparent age of the universe gives ~ 14.14 billion years. In approximation, we get the well-known equation 1/<em style="white-space:normal;">H</em><sub style="white-space:normal;"><em>0</em></sub> ≈ 13.56 billion years. When we force these ages to fit the 1/<em style="white-space:normal;">H</em><sub style="white-space:normal;"><em>0</em></sub> formula, it gives two different Hubble constant values of ~69.2 and 72.1 km<span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">⋅</span></span></span></span></span></span>s<sup><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">-</span></span></span></span>1</sup><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">⋅</span><span style="white-space:nowrap;">sdot;</span></span></span></span></span>MParsec<sup><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">-</span></span></span></span>1</sup>. When we apply a theoretical correction factor of <em>η</em> ≈ 1.042516951 on the first value, both target the second one. We found 42 equations of <em style="white-space:normal;">H</em><sub style="white-space:normal;"><em>0</em></sub> linking different physics constants. Some are used to measure <em style="white-space:normal;">H</em><sub style="white-space:normal;"><em>0</em></sub> as a function of the average temperature<em> T</em> of the Cosmological Microwave Background and the universal gravitational constant <em>G</em>: </p> <p> <em>H</em><sub><em>0</em></sub> ≈ 72.06(90) km<span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">⋅</span></span></span></span>s<span style="vertical-align:super;white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">-</span></span></span><sup>1</sup><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">⋅</span></span></span></span>MParsec<sup><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">-</span></span></span>1</sup> from <em>T </em>by Cobra probe & Equation (16) </p> <p> <em>H</em><sub><em>0</em></sub> ≈ 71.95(50) km<span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">⋅</span></span></span></span>s<sup><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">-</span></span></span>1</sup><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">⋅</span></span></span></span>MParsec<sup><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">-</span></span></span>1 </sup>from<em> T</em> by Partridge & Equation (16) </p> <p> <em>H</em><sub><em>0</em></sub> ≈ 72.086(36) km<span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">⋅</span></span></span></span>s<sup><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">-</span></span></span>1</sup><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">⋅</span></span></span></span>MParsec<sup><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">-1 </span></span></span></sup>from <em>G</em> & Equation (34) </p> <p> <em>H</em><sub><em>0</em></sub> ≈ 72.105(36) km<span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">⋅</span></span></span></span>s<sup><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">-</span></span></span>1</sup><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">⋅</span></span></span></span>MParsec<sup><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">-</span></span></span>1</sup> from <em></em><em>G</em> & Equations (74), (75), or (76). With 508 published values, <em>H</em><sub><em>0</em></sub> ≈ 72.0957 ± 0.33 km<span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">⋅</span></span></span></span>s<sup><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">-</span></span></span>1</sup><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">⋅</span></span></span></span>MParsec<sup><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">-</span></span></span>1</sup> seems to be the “ideal” statistical result. It validates our model and our theoretical <em>H</em><sub><em>0</em></sub> value which are useful to find various interactions with the different constants. Our model also explains the ambiguity between the different universe’s age measurements and seems to unlock a tension between two <em>H</em><sub><em>0</em></sub> values. </p>