Consumption of natto,a traditional eastern Asian food made of fermented soybeans by Bacillus subtilis,has long been linked to healthy aging and longer human lifespan.As the key thrombolytic ingredient of natto,the ser...Consumption of natto,a traditional eastern Asian food made of fermented soybeans by Bacillus subtilis,has long been linked to healthy aging and longer human lifespan.As the key thrombolytic ingredient of natto,the serine protease nattokinase(NK)has been developed into a widely-used dietary supplement.NK has shown excellent anti-thrombus,thrombolytic,and anti-inflammation activities that potentially delay aging and provide therapeutic effects on aging-related diseases.In this review,we critically overview the experimental and clinical evidence in the past 20 years that support the beneficial function of NK in the prevention and treatment of aging-related diseases,including cardiovascular diseases,Alzheimer’s disease,other abnormalities and cancer.We focus on the underlying molecular mechanisms and recent advances in application methods that are aimed at further development of NK for healthier aging of modern society.The challenges and unsolved issues in this area are also discussed.展开更多
The proportion of elderly people rises in the developed countries. The increased susceptibility of the elderly to infectious diseases is caused by immune dysfunction, especially T cell functional decline. Age-related ...The proportion of elderly people rises in the developed countries. The increased susceptibility of the elderly to infectious diseases is caused by immune dysfunction, especially T cell functional decline. Age-related hematopoietic stem cells deviate from lymphoid lineage to myeloid lineage. Thymus shrinks early in life, which is followed by the decline of na?ve T cells. T-cell receptor repertoire diversity declines by aging, which is caused by cytomegalovirus-driven T cell clonal expansion. Functional decline of B cell induces antibody affinity declines by aging. Many effector functions including phagocytosis of myeloid cells are down regulated by aging. The studies of aging of myeloid cells have some controversial results. Although M1 macrophages have been shown to be replaced by antiinflammatory(M2) macrophages by advanced age, many human studies showed that pro-inflammatory cytokines are elevated in older human. To solve this discrepancy here we divide age-related pathological changes into two categories. One is an aging of immune cell itself. Second is involvement of immune cells to age-related pathological changes. Cellular senescence and damaged cells in aged tissue recruit pro-inflammatory M1 macrophages, which produce pro-inflammatory cytokines and proceed to agerelated diseases. Underlying biochemical and metabolic studies will open nutritional treatment.展开更多
Cellular senescence has emerged as an important contributor to aging and age-related diseases.Non-ionizing radiation(NIR),including ultraviolet radiation and electromagnetic fields,has been increasingly recognized as ...Cellular senescence has emerged as an important contributor to aging and age-related diseases.Non-ionizing radiation(NIR),including ultraviolet radiation and electromagnetic fields,has been increasingly recognized as a key inducer of premature senescence.In this review,we discuss the molecular mechanisms of NIR-induced cellular senescence and its effects on aging and age-related diseases.We also summarize the modulation strategies for NIR-induced cellular senescence.A better understanding of the complex relationship between nonionizing radiation,cellular senescence and age-related pathology may lead to interventions to ameliorate radiation damage and delay aging.Further research is still needed to elucidate the precise mechanisms,dose-response effects,and to develop protective strategies against radiation-induced senescence.展开更多
BACKGROUND The importance of age on the development of ocular conditions has been reported by numerous studies.Diabetes may have different associations with different stages of ocular conditions,and the duration of di...BACKGROUND The importance of age on the development of ocular conditions has been reported by numerous studies.Diabetes may have different associations with different stages of ocular conditions,and the duration of diabetes may affect the development of diabetic eye disease.While there is a dose-response relationship between the age at diagnosis of diabetes and the risk of cardiovascular disease and mortality,whether the age at diagnosis of diabetes is associated with incident ocular conditions remains to be explored.It is unclear which types of diabetes are more predictive of ocular conditions.AIM To examine associations between the age of diabetes diagnosis and the incidence of cataract,glaucoma,age-related macular degeneration(AMD),and vision acuity.METHODS Our analysis was using the UK Biobank.The cohort included 8709 diabetic participants and 17418 controls for ocular condition analysis,and 6689 diabetic participants and 13378 controls for vision analysis.Ocular diseases were identified using inpatient records until January 2021.Vision acuity was assessed using a chart.RESULTS During a median follow-up of 11.0 years,3874,665,and 616 new cases of cataract,glaucoma,and AMD,respectively,were identified.A stronger association between diabetes and incident ocular conditions was observed where diabetes was diagnosed at a younger age.Individuals with type 2 diabetes(T2D)diagnosed at<45 years[HR(95%CI):2.71(1.49-4.93)],45-49 years[2.57(1.17-5.65)],50-54 years[1.85(1.13-3.04)],or 50-59 years of age[1.53(1.00-2.34)]had a higher risk of AMD independent of glycated haemoglobin.T2D diagnosed<45 years[HR(95%CI):2.18(1.71-2.79)],45-49 years[1.54(1.19-2.01)],50-54 years[1.60(1.31-1.96)],or 55-59 years of age[1.21(1.02-1.43)]was associated with an increased cataract risk.T2D diagnosed<45 years of age only was associated with an increased risk of glaucoma[HR(95%CI):1.76(1.00-3.12)].HRs(95%CIs)for AMD,cataract,and glaucoma associated with type 1 diabetes(T1D)were 4.12(1.99-8.53),2.95(2.17-4.02),and 2.40(1.09-5.31),respectively.In multivariable-adjusted analysis,individuals with T2D diagnosed<45 years of age[β95%CI:0.025(0.009,0.040)]had a larger increase in LogMAR.Theβ(95%CI)for LogMAR associated with T1D was 0.044(0.014,0.073).CONCLUSION The younger age at the diagnosis of diabetes is associated with a larger relative risk of incident ocular diseases and greater vision loss.展开更多
Retinal aging has been recognized as a significant risk factor for various retinal disorders,including diabetic retinopathy,age-related macular degeneration,and glaucoma,following a growing understanding of the molecu...Retinal aging has been recognized as a significant risk factor for various retinal disorders,including diabetic retinopathy,age-related macular degeneration,and glaucoma,following a growing understanding of the molecular underpinnings of their development.This comprehensive review explores the mechanisms of retinal aging and investigates potential neuroprotective approaches,focusing on the activation of transcription factor EB.Recent meta-analyses have demonstrated promising outcomes of transcription factor EB-targeted strategies,such as exercise,calorie restriction,rapamycin,and metformin,in patients and animal models of these common retinal diseases.The review critically assesses the role of transcription factor EB in retinal biology during aging,its neuroprotective effects,and its therapeutic potential for retinal disorders.The impact of transcription factor EB on retinal aging is cell-specific,influencing metabolic reprogramming and energy homeostasis in retinal neurons through the regulation of mitochondrial quality control and nutrient-sensing pathways.In vascular endothelial cells,transcription factor EB controls important processes,including endothelial cell proliferation,endothelial tube formation,and nitric oxide levels,thereby influencing the inner blood-retinal barrier,angiogenesis,and retinal microvasculature.Additionally,transcription factor EB affects vascular smooth muscle cells,inhibiting vascular calcification and atherogenesis.In retinal pigment epithelial cells,transcription factor EB modulates functions such as autophagy,lysosomal dynamics,and clearance of the aging pigment lipofuscin,thereby promoting photoreceptor survival and regulating vascular endothelial growth factor A expression involved in neovascularization.These cell-specific functions of transcription factor EB significantly impact retinal aging mechanisms encompassing proteostasis,neuronal synapse plasticity,energy metabolism,microvasculature,and inflammation,ultimately offering protection against retinal aging and diseases.The review emphasizes transcription factor EB as a potential therapeutic target for retinal diseases.Therefore,it is imperative to obtain well-controlled direct experimental evidence to confirm the efficacy of transcription factor EB modulation in retinal diseases while minimizing its risk of adverse effects.展开更多
Metabolic dysfunction-associated steatotic liver disease(MASLD)affects approximately 25%of the world's population and has become a leading cause of chronic liver disease.In recent years,an increasing amount of dat...Metabolic dysfunction-associated steatotic liver disease(MASLD)affects approximately 25%of the world's population and has become a leading cause of chronic liver disease.In recent years,an increasing amount of data suggests that MASLD is associated with aging.As the population ages,age-related MASLD will become a major global health problem.Targeting an aging will become a new approach to the treatment of MASLD.This paper reviews the current studies on the role of aging-related factors and therapeutic targets in MASLD,including:Oxidative stress,autophagy,mitochondrial homeostasis,bile acid metabolism homeostasis,and dysbiosis.The aim is to identify effective therapeutic targets for age-related MASLD and its progression.展开更多
Ferroptosis, a unique type of cell death, is characterized by iron-dependent accumulation and lipid peroxidation. It is closely related to multiple biological processes, including iron metabolism, polyunsaturated fatt...Ferroptosis, a unique type of cell death, is characterized by iron-dependent accumulation and lipid peroxidation. It is closely related to multiple biological processes, including iron metabolism, polyunsaturated fatty acid metabolism, and the biosynthesis of compounds with antioxidant activities, including glutathione. In the past 10 years, increasing evidence has indicated a potentially strong relationship between ferroptosis and the onset and progression of age-related orthopedic diseases, such as osteoporosis and osteoarthritis. Therefore, in-depth knowledge of the regulatory mechanisms of ferroptosis in age-related orthopedic diseases may help improve disease treatment and prevention. This review provides an overview of recent research on ferroptosis and its influences on bone and cartilage homeostasis. It begins with a brief overview of systemic iron metabolism and ferroptosis,particularly the potential mechanisms of ferroptosis. It presents a discussion on the role of ferroptosis in age-related orthopedic diseases, including promotion of bone loss and cartilage degradation and the inhibition of osteogenesis. Finally, it focuses on the future of targeting ferroptosis to treat age-related orthopedic diseases with the intention of inspiring further clinical research and the development of therapeutic strategies.展开更多
Age-related diseases(ARDs) are arising as a major threat to public health in our fast-aging society.Current development of nanomedicine has sparked much optimism toward ARDs management by improving drug delivery and c...Age-related diseases(ARDs) are arising as a major threat to public health in our fast-aging society.Current development of nanomedicine has sparked much optimism toward ARDs management by improving drug delivery and controlled drug release. However, effective treatments for ARDs, such as cancer and Alzheimer’s diseases(AD), are still lacking, due to the complicated pathological features of ARDs including multifactorial pathogenesis, intricate disease microenvironment, and dynamic symptom manifestation. Recently, dynamic supraparticles(DS), which are reversibly self-assembled functional nanoparticles, have provided a novel strategy for combating ARDs. Besides the intrinsic advantages of nanomedicine including multifunctional and multitarget, DS are capable of dynamic structural reconfiguration upon certain stimulation, creating another layer of maneuverability that allows programmed response to the spatiotemporal alterations of ARDs during progression and treatment. In this review,we will overview the challenges faced by ARDs management, and discuss the unique opportunities brought by DS. Then, we will summarize the designed synthesis of DS for ARDs treatment. Finally, we will dissect the therapeutic targets in ARDs that can be exploited by DS, and present the encouraging advances in this field. Hopefully, this review will bridge our knowledge of the design principle of DS and ARDs management, which may inspire the future development of potent theranostic agents to improve the healthcare.展开更多
Exosomes are cup-shaped extracellular vesicles with a lipid bilayer that is approximately 30 to 200 nm in thickness.Exosomes are widely distributed in a range of body fluids,including urine,blood,milk,and saliva.Exoso...Exosomes are cup-shaped extracellular vesicles with a lipid bilayer that is approximately 30 to 200 nm in thickness.Exosomes are widely distributed in a range of body fluids,including urine,blood,milk,and saliva.Exosomes exert biological function by transporting factors between different cells and by regulating biological pathways in recipient cells.As an important form of intercellular communication,exosomes are increasingly being investigated due to their ability to transfer bioactive molecules such as lipids,proteins,mRNAs,and microRNAs between cells,and because they can regulate physiological and pathological processes in the central nervous system.Adult neurogenesis is a multistage process by which new neurons are generated and migrate to be integrated into existing neuronal circuits.In the adult brain,neurogenesis is mainly localized in two specialized niches:the subventricular zone adjacent to the lateral ventricles and the subgranular zone of the dentate gyrus.An increasing body of evidence indicates that adult neurogenesis is tightly controlled by environmental conditions with the niches.In recent studies,exosomes released from different sources of cells were shown to play an active role in regulating neurogenesis both in vitro and in vivo,thereby participating in the progression of neurodegenerative disorders in patients and in various disease models.Here,we provide a state-of-the-art synopsis of existing research that aimed to identify the diverse components of exosome cargoes and elucidate the therapeutic potential of exosomal contents in the regulation of neurogenesis in several neurodegenerative diseases.We emphasize that exosomal cargoes could serve as a potential biomarker to monitor functional neurogenesis in adults.In addition,exosomes can also be considered as a novel therapeutic approach to treat various neurodegenerative disorders by improving endogenous neurogenesis to mitigate neuronal loss in the central nervous system.展开更多
Lactate,a byproduct of glycolysis,was thought to be a metabolic waste until the discovery of the Warburg effect.Lactate not only functions as a metabolic substrate to provide energy but can also function as a signalin...Lactate,a byproduct of glycolysis,was thought to be a metabolic waste until the discovery of the Warburg effect.Lactate not only functions as a metabolic substrate to provide energy but can also function as a signaling molecule to modulate cellular functions under pathophysiological conditions.The Astrocyte-Neuron Lactate Shuttle has cla rified that lactate plays a pivotal role in the central nervous system.Moreover,protein lactylation highlights the novel role of lactate in regulating transcription,cellular functions,and disease development.This review summarizes the recent advances in lactate metabolism and its role in neurodegenerative diseases,thus providing optimal pers pectives for future research.展开更多
Neurodegenerative diseases are a group of disorders characterized by the progressive degeneration of neurons in the central or peripheral nervous system.Currently,there is no cure for neurodegenerative diseases and th...Neurodegenerative diseases are a group of disorders characterized by the progressive degeneration of neurons in the central or peripheral nervous system.Currently,there is no cure for neurodegenerative diseases and this means a heavy burden for patients and the health system worldwide.Therefore,it is necessary to find new therapeutic approaches,and antisense therapies offer this possibility,having the great advantage of not modifying cellular genome and potentially being safer.Many preclinical and clinical studies aim to test the safety and effectiveness of antisense therapies in the treatment of neurodegenerative diseases.The objective of this review is to summarize the recent advances in the development of these new technologies to treat the most common neurodegenerative diseases,with a focus on those antisense therapies that have already received the approval of the U.S.Food and Drug Administration.展开更多
Diseases like Alzheimer’s and Parkinson’s diseases are defined by inflammation and the damage neurons undergo due to oxidative stress. A primary reactive oxygen species contributor in the central nervous system, NAD...Diseases like Alzheimer’s and Parkinson’s diseases are defined by inflammation and the damage neurons undergo due to oxidative stress. A primary reactive oxygen species contributor in the central nervous system, NADPH oxidase 4, is viewed as a potential therapeutic touchstone and indicative marker for these ailments. This in-depth review brings to light distinct features of NADPH oxidase 4, responsible for generating superoxide and hydrogen peroxide, emphasizing its pivotal role in activating glial cells, inciting inflammation, and disturbing neuronal functions. Significantly, malfunctioning astrocytes, forming the majority in the central nervous system, play a part in advancing neurodegenerative diseases, due to their reactive oxygen species and inflammatory factor secretion. Our study reveals that aiming at NADPH oxidase 4 within astrocytes could be a viable treatment pathway to reduce oxidative damage and halt neurodegenerative processes. Adjusting NADPH oxidase 4 activity might influence the neuroinflammatory cytokine levels, including myeloperoxidase and osteopontin, offering better prospects for conditions like Alzheimer’s disease and Parkinson’s disease. This review sheds light on the role of NADPH oxidase 4 in neural degeneration, emphasizing its drug target potential, and paving the path for novel treatment approaches to combat these severe conditions.展开更多
Oral diseases, such as periodontitis, salivary gland diseases, and oral cancers, significantly challenge health conditions due to their detrimental effects on patient's digestive functions, pronunciation, and esth...Oral diseases, such as periodontitis, salivary gland diseases, and oral cancers, significantly challenge health conditions due to their detrimental effects on patient's digestive functions, pronunciation, and esthetic demands. Delayed diagnosis and non-targeted treatment profoundly influence patients' prognosis and quality of life. The exploration of innovative approaches for early detection and precise treatment represents a promising frontier in oral medicine.展开更多
ATP-binding cassette(ABC)transporters are ubiquitous membrane-bound proteins that are responsible for the translocation of a broad spectrum of substrates across cellular membranes,including lipids,amino acids,nucleosi...ATP-binding cassette(ABC)transporters are ubiquitous membrane-bound proteins that are responsible for the translocation of a broad spectrum of substrates across cellular membranes,including lipids,amino acids,nucleosides,sugars,and xenobiotics.Interestingly,ABC transporters are highly expressed in the brain.While their functions in the brain still need to be elucidated,several members are implicated in the pathogenesis of neurodegenerative diseases,including Alzheimer’s disease(AD),Parkinson’s disease(PD),and frontotemporal dementia.In this perspective,we will review current knowledge of ABC transporters in the central nervous system in terms of physiological functions and pathology in neurodegeneration.Furthermore,we will explore the possibilities of ABC transporters as potential targets in the development of therapeutics for neurodegenerative diseases.展开更多
Corneal neuromas,also termed microneuromas,refer to microscopic,irregula rly-shaped enlargements of terminal subbasal nerve endings at sites of nerve damage or injury.The formation of corneal neuromas results from dam...Corneal neuromas,also termed microneuromas,refer to microscopic,irregula rly-shaped enlargements of terminal subbasal nerve endings at sites of nerve damage or injury.The formation of corneal neuromas results from damage to corneal nerves,such as following corneal pathology or corneal or intraocular surge ries.Initially,denervated areas of sensory nerve fibers become invaded by sprouts of intact sensory nerve fibers,and later injured axons regenerate and new sprouts called neuromas develop.In recent years,analysis of corneal nerve abnormalities including corneal neuromas which can be identified using in vivo confocal microscopy,a non-invasive imaging technique with microscopic resolution,has been used to evaluate corneal neuropathy and ocular surface dysfunction.Corneal neuromas have been shown to be associated with clinical symptoms of discomfort and dryness of eyes,and are a promising surrogate biomarker for ocular surface diseases,such as neuropathic corneal pain,dry eye disease,diabetic corneal neuropathy,neurotrophic keratopathy,Sjogren's syndrome,bullous keratopathy,post-refra ctive surgery,and others.In this review,we have summarized the current literature on the association between these ocular surface diseases and the presentation of corneal microneuromas,as well as elaborated on their pathogenesis,visualization via in vivo confocal microscopy,and utility in monitoring treatment efficacy.As current quantitative analysis on neuromas mainly relies on manual annotation and quantification,which is user-dependent and labor-intensive,future direction includes the development of artificial intelligence software to identify and quantify these potential imaging biomarkers in a more automated and sensitive manner,allowing it to be applied in clinical settings more efficiently.Combining imaging and molecular biomarkers may also help elucidate the associations between corneal neuromas and ocular surface diseases.展开更多
Autophagy is a cellular catabolic process characterized by the formation of double-membrane autophagosomes.Transmission electron microscopy is the most rigorous method to clearly visualize autophagic engulfment and de...Autophagy is a cellular catabolic process characterized by the formation of double-membrane autophagosomes.Transmission electron microscopy is the most rigorous method to clearly visualize autophagic engulfment and degradation.A large number of studies have shown that autophagy is closely related to the digestion,secretion,and regeneration of gastrointestinal(GI)cells.However,the role of autophagy in GI diseases remains controversial.This article focuses on the morphological and biochemical characteristics of autophagy in GI diseases,in order to provide new ideas for their diagnosis and treatment.展开更多
Autophagy is a multifaceted cellular process that not only maintains the homeostatic and adaptive responses of the brain but is also dynamically involved in the regulation of neural cell generation,maturation,and surv...Autophagy is a multifaceted cellular process that not only maintains the homeostatic and adaptive responses of the brain but is also dynamically involved in the regulation of neural cell generation,maturation,and survival.Autophagy facilities the utilization of energy and the microenvironment for developing neural stem cells.Autophagy arbitrates structural and functional remodeling during the cell differentiation process.Autophagy also plays an indispensable role in the maintenance of stemness and homeostasis in neural stem cells during essential brain physiology and also in the instigation and progression of diseases.Only recently,studies have begun to shed light on autophagy regulation in glia(microglia,astrocyte,and oligodendrocyte)in the brain.Glial cells have attained relatively less consideration despite their unquestioned influence on various aspects of neural development,synaptic function,brain metabolism,cellular debris clearing,and restoration of damaged or injured tissues.Thus,this review composes pertinent information regarding the involvement of autophagy in neural stem cells and glial regulation and the role of this connexion in normal brain functions,neurodevelopmental disorders,and neurodegenerative diseases.This review will provide insight into establishing a concrete strategic approach for investigating pathological mechanisms and developing therapies for brain diseases.展开更多
A growing body of evidence suggests that the gut microbiota contributes to the development of neurodegenerative diseases via the microbiota-gut-brain axis.As a contributing factor,microbiota dysbiosis always occurs in...A growing body of evidence suggests that the gut microbiota contributes to the development of neurodegenerative diseases via the microbiota-gut-brain axis.As a contributing factor,microbiota dysbiosis always occurs in pathological changes of neurodegenerative diseases,such as Alzheimer’s disease,Parkinson’s disease,and amyotrophic lateral sclerosis.High-throughput sequencing technology has helped to reveal that the bidirectional communication between the central nervous system and the enteric nervous system is facilitated by the microbiota’s diverse microorganisms,and for both neuroimmune and neuroendocrine systems.Here,we summarize the bioinformatics analysis and wet-biology validation for the gut metagenomics in neurodegenerative diseases,with an emphasis on multi-omics studies and the gut virome.The pathogen-associated signaling biomarkers for identifying brain disorders and potential therapeutic targets are also elucidated.Finally,we discuss the role of diet,prebiotics,probiotics,postbiotics and exercise interventions in remodeling the microbiome and reducing the symptoms of neurodegenerative diseases.展开更多
Infectious diseases are the common enemies of mankind.In the course of historical development,they persistently threaten human health and safety.Even today,despite the developments in medical science,we cannot escape ...Infectious diseases are the common enemies of mankind.In the course of historical development,they persistently threaten human health and safety.Even today,despite the developments in medical science,we cannot escape the fear and suffering caused by infectious diseases.Whether in ancient or modern times,the source of infection,route of transmission,and a susceptible population are the three key conditions for the prevalence and spread of infectious diseases.All factors closely related to these three conditions can affect the prevalence of infectious diseases.China is one of the cradles of world civilization.The ancient people accumulated a great deal of experience and lessons in the long struggle against infectious diseases.In the face of the current threat posed by widespread infectious disease,it is imperative to review and summarize ancient Chinese ideas and health policies on epidemic prevention and control to inspire contemporary efforts in the prevention and control of infectious disease.The combination of prevention-oriented epidemic prevention ideology and traditional medicine provides valuable insights,especially for impoverished and medically underserved regions.展开更多
In this editorial we comment on the article titled“Inflammatory bowel diseases patients suffer from significant low levels and barriers to physical activity:The BE-FIT-IBD study”published in a recent issue of the Wo...In this editorial we comment on the article titled“Inflammatory bowel diseases patients suffer from significant low levels and barriers to physical activity:The BE-FIT-IBD study”published in a recent issue of the World Journal of Gastroen-terology 2023;29(41):5668-5682.Inflammatory bowel diseases(IBD)are emerging as a significant global health concern as their incidence continues to rise on a global scale,with detrimental impacts on quality of life.While many advances have been made regarding the management of the disease,physical inactivity in these patients represents an underexplored issue that may hold the key for further and better understanding the ramifications of IBD.Chronic pain,fatigue,and fear of exacerbating symptoms promotes physical inactivity among IBD patients,while the lack of clear guidelines on safe exercise regimens contributes to a norm of physical inactivity.Physical activity(PA)is accepted to have a positive effect on disease outcomes and quality of life,while inactivity exacerbates comorbidities like cardiovascular disease and mental health disorders.The“BE-FIT-IBD”study,focusing on PA levels and barriers in IBD patients of Southern Italy,revealed that a significant proportion(42.9%)were physically inactive.This lack of PA is attributed to barriers such as fear of flare-ups and misconceptions about exercise exacerbating the disease.The study also highlighted the need for better communication between healthcare providers and patients regarding the benefits of PA and safe incorporation into lifestyles.Moreover,physical inactivity may also contribute to disability in IBD patients,having a great impact on employment status.Of note is the fact that IBD also comes with an important psychological burden with relevant evidence suggesting that regular PA can improve mood,reduce anxiety,and enhance mental health.The“BE-FIT-IBD”study advocated for the integration of PA into IBD management,emphasizing the bidirectional link between PA and IBD.Regular exercise can influence the course of IBD,potentially reducing symptom severity and prolonging remission periods.As such,it is mandatory that healthcare providers actively educate patients,dispel misconceptions,and tailor exercise recommendations to improve the quality of life and reduce IBD-related complications.展开更多
基金supported by the China Postdoctoral Science Foundation(2021M693870,2022M711395)the National Natural Science Foundation of China(32000426,31971335)Department of Education of Liaoning Province(1911520092).
文摘Consumption of natto,a traditional eastern Asian food made of fermented soybeans by Bacillus subtilis,has long been linked to healthy aging and longer human lifespan.As the key thrombolytic ingredient of natto,the serine protease nattokinase(NK)has been developed into a widely-used dietary supplement.NK has shown excellent anti-thrombus,thrombolytic,and anti-inflammation activities that potentially delay aging and provide therapeutic effects on aging-related diseases.In this review,we critically overview the experimental and clinical evidence in the past 20 years that support the beneficial function of NK in the prevention and treatment of aging-related diseases,including cardiovascular diseases,Alzheimer’s disease,other abnormalities and cancer.We focus on the underlying molecular mechanisms and recent advances in application methods that are aimed at further development of NK for healthier aging of modern society.The challenges and unsolved issues in this area are also discussed.
文摘The proportion of elderly people rises in the developed countries. The increased susceptibility of the elderly to infectious diseases is caused by immune dysfunction, especially T cell functional decline. Age-related hematopoietic stem cells deviate from lymphoid lineage to myeloid lineage. Thymus shrinks early in life, which is followed by the decline of na?ve T cells. T-cell receptor repertoire diversity declines by aging, which is caused by cytomegalovirus-driven T cell clonal expansion. Functional decline of B cell induces antibody affinity declines by aging. Many effector functions including phagocytosis of myeloid cells are down regulated by aging. The studies of aging of myeloid cells have some controversial results. Although M1 macrophages have been shown to be replaced by antiinflammatory(M2) macrophages by advanced age, many human studies showed that pro-inflammatory cytokines are elevated in older human. To solve this discrepancy here we divide age-related pathological changes into two categories. One is an aging of immune cell itself. Second is involvement of immune cells to age-related pathological changes. Cellular senescence and damaged cells in aged tissue recruit pro-inflammatory M1 macrophages, which produce pro-inflammatory cytokines and proceed to agerelated diseases. Underlying biochemical and metabolic studies will open nutritional treatment.
文摘Cellular senescence has emerged as an important contributor to aging and age-related diseases.Non-ionizing radiation(NIR),including ultraviolet radiation and electromagnetic fields,has been increasingly recognized as a key inducer of premature senescence.In this review,we discuss the molecular mechanisms of NIR-induced cellular senescence and its effects on aging and age-related diseases.We also summarize the modulation strategies for NIR-induced cellular senescence.A better understanding of the complex relationship between nonionizing radiation,cellular senescence and age-related pathology may lead to interventions to ameliorate radiation damage and delay aging.Further research is still needed to elucidate the precise mechanisms,dose-response effects,and to develop protective strategies against radiation-induced senescence.
基金Supported by National Natural Science Foundation of China,No.32200545The GDPH Supporting Fund for Talent Program,No.KJ012020633 and KJ012019530Science and Technology Research Project of Guangdong Provincial Hospital of Chinese Medicine,No.YN2022GK04。
文摘BACKGROUND The importance of age on the development of ocular conditions has been reported by numerous studies.Diabetes may have different associations with different stages of ocular conditions,and the duration of diabetes may affect the development of diabetic eye disease.While there is a dose-response relationship between the age at diagnosis of diabetes and the risk of cardiovascular disease and mortality,whether the age at diagnosis of diabetes is associated with incident ocular conditions remains to be explored.It is unclear which types of diabetes are more predictive of ocular conditions.AIM To examine associations between the age of diabetes diagnosis and the incidence of cataract,glaucoma,age-related macular degeneration(AMD),and vision acuity.METHODS Our analysis was using the UK Biobank.The cohort included 8709 diabetic participants and 17418 controls for ocular condition analysis,and 6689 diabetic participants and 13378 controls for vision analysis.Ocular diseases were identified using inpatient records until January 2021.Vision acuity was assessed using a chart.RESULTS During a median follow-up of 11.0 years,3874,665,and 616 new cases of cataract,glaucoma,and AMD,respectively,were identified.A stronger association between diabetes and incident ocular conditions was observed where diabetes was diagnosed at a younger age.Individuals with type 2 diabetes(T2D)diagnosed at<45 years[HR(95%CI):2.71(1.49-4.93)],45-49 years[2.57(1.17-5.65)],50-54 years[1.85(1.13-3.04)],or 50-59 years of age[1.53(1.00-2.34)]had a higher risk of AMD independent of glycated haemoglobin.T2D diagnosed<45 years[HR(95%CI):2.18(1.71-2.79)],45-49 years[1.54(1.19-2.01)],50-54 years[1.60(1.31-1.96)],or 55-59 years of age[1.21(1.02-1.43)]was associated with an increased cataract risk.T2D diagnosed<45 years of age only was associated with an increased risk of glaucoma[HR(95%CI):1.76(1.00-3.12)].HRs(95%CIs)for AMD,cataract,and glaucoma associated with type 1 diabetes(T1D)were 4.12(1.99-8.53),2.95(2.17-4.02),and 2.40(1.09-5.31),respectively.In multivariable-adjusted analysis,individuals with T2D diagnosed<45 years of age[β95%CI:0.025(0.009,0.040)]had a larger increase in LogMAR.Theβ(95%CI)for LogMAR associated with T1D was 0.044(0.014,0.073).CONCLUSION The younger age at the diagnosis of diabetes is associated with a larger relative risk of incident ocular diseases and greater vision loss.
基金supported by the Start-up Fund for new faculty from the Hong Kong Polytechnic University(PolyU)(A0043215)(to SA)the General Research Fund and Research Impact Fund from the Hong Kong Research Grants Council(15106018,R5032-18)(to DYT)+1 种基金the Research Center for SHARP Vision in PolyU(P0045843)(to SA)the InnoHK scheme from the Hong Kong Special Administrative Region Government(to DYT).
文摘Retinal aging has been recognized as a significant risk factor for various retinal disorders,including diabetic retinopathy,age-related macular degeneration,and glaucoma,following a growing understanding of the molecular underpinnings of their development.This comprehensive review explores the mechanisms of retinal aging and investigates potential neuroprotective approaches,focusing on the activation of transcription factor EB.Recent meta-analyses have demonstrated promising outcomes of transcription factor EB-targeted strategies,such as exercise,calorie restriction,rapamycin,and metformin,in patients and animal models of these common retinal diseases.The review critically assesses the role of transcription factor EB in retinal biology during aging,its neuroprotective effects,and its therapeutic potential for retinal disorders.The impact of transcription factor EB on retinal aging is cell-specific,influencing metabolic reprogramming and energy homeostasis in retinal neurons through the regulation of mitochondrial quality control and nutrient-sensing pathways.In vascular endothelial cells,transcription factor EB controls important processes,including endothelial cell proliferation,endothelial tube formation,and nitric oxide levels,thereby influencing the inner blood-retinal barrier,angiogenesis,and retinal microvasculature.Additionally,transcription factor EB affects vascular smooth muscle cells,inhibiting vascular calcification and atherogenesis.In retinal pigment epithelial cells,transcription factor EB modulates functions such as autophagy,lysosomal dynamics,and clearance of the aging pigment lipofuscin,thereby promoting photoreceptor survival and regulating vascular endothelial growth factor A expression involved in neovascularization.These cell-specific functions of transcription factor EB significantly impact retinal aging mechanisms encompassing proteostasis,neuronal synapse plasticity,energy metabolism,microvasculature,and inflammation,ultimately offering protection against retinal aging and diseases.The review emphasizes transcription factor EB as a potential therapeutic target for retinal diseases.Therefore,it is imperative to obtain well-controlled direct experimental evidence to confirm the efficacy of transcription factor EB modulation in retinal diseases while minimizing its risk of adverse effects.
基金Supported by Jilin Provincial Department of science and Technology,No.YDZJ202301ZYTS112 and No.YDZJ202101ZYTS090Jilin Provincial Health and Family Planning Commission,No.2021JC084.
文摘Metabolic dysfunction-associated steatotic liver disease(MASLD)affects approximately 25%of the world's population and has become a leading cause of chronic liver disease.In recent years,an increasing amount of data suggests that MASLD is associated with aging.As the population ages,age-related MASLD will become a major global health problem.Targeting an aging will become a new approach to the treatment of MASLD.This paper reviews the current studies on the role of aging-related factors and therapeutic targets in MASLD,including:Oxidative stress,autophagy,mitochondrial homeostasis,bile acid metabolism homeostasis,and dysbiosis.The aim is to identify effective therapeutic targets for age-related MASLD and its progression.
基金National Natural Science Foundation of China (82071970,81874030, 82072506, 92268115, and 31930057)National Key R&D Program of China(2019YFA0111900 and 2018YFA0507802)+5 种基金Innovation-Driven Project of Central South University (2020CX045)Key Program of Health Commission of Hunan Province(20201902)Young Talents Project of Hubei Provincial Health Commission(WJ2021Q053)Science and Technology Innovation Program of Hunan Province (No.2021RC3025)Innovation Project for Postgraduate Students of Central South University (2021zzts1024)Science and Technology Innovation Project of Jianghan University (2021kjzx008)。
文摘Ferroptosis, a unique type of cell death, is characterized by iron-dependent accumulation and lipid peroxidation. It is closely related to multiple biological processes, including iron metabolism, polyunsaturated fatty acid metabolism, and the biosynthesis of compounds with antioxidant activities, including glutathione. In the past 10 years, increasing evidence has indicated a potentially strong relationship between ferroptosis and the onset and progression of age-related orthopedic diseases, such as osteoporosis and osteoarthritis. Therefore, in-depth knowledge of the regulatory mechanisms of ferroptosis in age-related orthopedic diseases may help improve disease treatment and prevention. This review provides an overview of recent research on ferroptosis and its influences on bone and cartilage homeostasis. It begins with a brief overview of systemic iron metabolism and ferroptosis,particularly the potential mechanisms of ferroptosis. It presents a discussion on the role of ferroptosis in age-related orthopedic diseases, including promotion of bone loss and cartilage degradation and the inhibition of osteogenesis. Finally, it focuses on the future of targeting ferroptosis to treat age-related orthopedic diseases with the intention of inspiring further clinical research and the development of therapeutic strategies.
基金supported by the National Key Research and Development Program of China (2016YFA0203600)the National Natural Science Foundation of China (31822019,51703195,and 91859116)+3 种基金One Belt and One Road International Cooperation Project from Key Research and Development Program of Zhejiang Province (2019C04024)the Zhejiang Provincial Natural Science Foundation (LGF19C100002)the Fundamental Research Funds for the Central Universities (2018QNA7020)‘‘Thousand Talents Program” for Distinguished Young Scholars
文摘Age-related diseases(ARDs) are arising as a major threat to public health in our fast-aging society.Current development of nanomedicine has sparked much optimism toward ARDs management by improving drug delivery and controlled drug release. However, effective treatments for ARDs, such as cancer and Alzheimer’s diseases(AD), are still lacking, due to the complicated pathological features of ARDs including multifactorial pathogenesis, intricate disease microenvironment, and dynamic symptom manifestation. Recently, dynamic supraparticles(DS), which are reversibly self-assembled functional nanoparticles, have provided a novel strategy for combating ARDs. Besides the intrinsic advantages of nanomedicine including multifunctional and multitarget, DS are capable of dynamic structural reconfiguration upon certain stimulation, creating another layer of maneuverability that allows programmed response to the spatiotemporal alterations of ARDs during progression and treatment. In this review,we will overview the challenges faced by ARDs management, and discuss the unique opportunities brought by DS. Then, we will summarize the designed synthesis of DS for ARDs treatment. Finally, we will dissect the therapeutic targets in ARDs that can be exploited by DS, and present the encouraging advances in this field. Hopefully, this review will bridge our knowledge of the design principle of DS and ARDs management, which may inspire the future development of potent theranostic agents to improve the healthcare.
基金supported by grants from the Department of Science and Technology of Sichuan Province,Nos.2021ZYD0093(to LY),2022YFS0597(to LY),2021YJ0480(to YT),and 2022ZYD0076(to JY)。
文摘Exosomes are cup-shaped extracellular vesicles with a lipid bilayer that is approximately 30 to 200 nm in thickness.Exosomes are widely distributed in a range of body fluids,including urine,blood,milk,and saliva.Exosomes exert biological function by transporting factors between different cells and by regulating biological pathways in recipient cells.As an important form of intercellular communication,exosomes are increasingly being investigated due to their ability to transfer bioactive molecules such as lipids,proteins,mRNAs,and microRNAs between cells,and because they can regulate physiological and pathological processes in the central nervous system.Adult neurogenesis is a multistage process by which new neurons are generated and migrate to be integrated into existing neuronal circuits.In the adult brain,neurogenesis is mainly localized in two specialized niches:the subventricular zone adjacent to the lateral ventricles and the subgranular zone of the dentate gyrus.An increasing body of evidence indicates that adult neurogenesis is tightly controlled by environmental conditions with the niches.In recent studies,exosomes released from different sources of cells were shown to play an active role in regulating neurogenesis both in vitro and in vivo,thereby participating in the progression of neurodegenerative disorders in patients and in various disease models.Here,we provide a state-of-the-art synopsis of existing research that aimed to identify the diverse components of exosome cargoes and elucidate the therapeutic potential of exosomal contents in the regulation of neurogenesis in several neurodegenerative diseases.We emphasize that exosomal cargoes could serve as a potential biomarker to monitor functional neurogenesis in adults.In addition,exosomes can also be considered as a novel therapeutic approach to treat various neurodegenerative disorders by improving endogenous neurogenesis to mitigate neuronal loss in the central nervous system.
基金supported by the National Natural Science Foundation of China,Nos.82230042 and 81930029(to ZY),U2004201(to FG and RYP)the China Postdoctoral Science Foundation,No.2020M683748(to RYP)。
文摘Lactate,a byproduct of glycolysis,was thought to be a metabolic waste until the discovery of the Warburg effect.Lactate not only functions as a metabolic substrate to provide energy but can also function as a signaling molecule to modulate cellular functions under pathophysiological conditions.The Astrocyte-Neuron Lactate Shuttle has cla rified that lactate plays a pivotal role in the central nervous system.Moreover,protein lactylation highlights the novel role of lactate in regulating transcription,cellular functions,and disease development.This review summarizes the recent advances in lactate metabolism and its role in neurodegenerative diseases,thus providing optimal pers pectives for future research.
基金supported by Association 2HE(Center for Human Health and Environment)by Regione Puglia-Grant Malattie Rare DUP n.246 of 2019(to CB).
文摘Neurodegenerative diseases are a group of disorders characterized by the progressive degeneration of neurons in the central or peripheral nervous system.Currently,there is no cure for neurodegenerative diseases and this means a heavy burden for patients and the health system worldwide.Therefore,it is necessary to find new therapeutic approaches,and antisense therapies offer this possibility,having the great advantage of not modifying cellular genome and potentially being safer.Many preclinical and clinical studies aim to test the safety and effectiveness of antisense therapies in the treatment of neurodegenerative diseases.The objective of this review is to summarize the recent advances in the development of these new technologies to treat the most common neurodegenerative diseases,with a focus on those antisense therapies that have already received the approval of the U.S.Food and Drug Administration.
基金supported by the National Research Foundation of the Republic of Korea 2018R1D1A3B07047960the Soonchunhyang University Research Fund(to SSY).
文摘Diseases like Alzheimer’s and Parkinson’s diseases are defined by inflammation and the damage neurons undergo due to oxidative stress. A primary reactive oxygen species contributor in the central nervous system, NADPH oxidase 4, is viewed as a potential therapeutic touchstone and indicative marker for these ailments. This in-depth review brings to light distinct features of NADPH oxidase 4, responsible for generating superoxide and hydrogen peroxide, emphasizing its pivotal role in activating glial cells, inciting inflammation, and disturbing neuronal functions. Significantly, malfunctioning astrocytes, forming the majority in the central nervous system, play a part in advancing neurodegenerative diseases, due to their reactive oxygen species and inflammatory factor secretion. Our study reveals that aiming at NADPH oxidase 4 within astrocytes could be a viable treatment pathway to reduce oxidative damage and halt neurodegenerative processes. Adjusting NADPH oxidase 4 activity might influence the neuroinflammatory cytokine levels, including myeloperoxidase and osteopontin, offering better prospects for conditions like Alzheimer’s disease and Parkinson’s disease. This review sheds light on the role of NADPH oxidase 4 in neural degeneration, emphasizing its drug target potential, and paving the path for novel treatment approaches to combat these severe conditions.
基金supported by the National Natural Science Foundation of China Grants(82370945, 82171001, 82222015 and 82370915)Research Funding from West China School/Hospital of Stomatology Sichuan University(RCDWJS2023-1)。
文摘Oral diseases, such as periodontitis, salivary gland diseases, and oral cancers, significantly challenge health conditions due to their detrimental effects on patient's digestive functions, pronunciation, and esthetic demands. Delayed diagnosis and non-targeted treatment profoundly influence patients' prognosis and quality of life. The exploration of innovative approaches for early detection and precise treatment represents a promising frontier in oral medicine.
文摘ATP-binding cassette(ABC)transporters are ubiquitous membrane-bound proteins that are responsible for the translocation of a broad spectrum of substrates across cellular membranes,including lipids,amino acids,nucleosides,sugars,and xenobiotics.Interestingly,ABC transporters are highly expressed in the brain.While their functions in the brain still need to be elucidated,several members are implicated in the pathogenesis of neurodegenerative diseases,including Alzheimer’s disease(AD),Parkinson’s disease(PD),and frontotemporal dementia.In this perspective,we will review current knowledge of ABC transporters in the central nervous system in terms of physiological functions and pathology in neurodegeneration.Furthermore,we will explore the possibilities of ABC transporters as potential targets in the development of therapeutics for neurodegenerative diseases.
文摘Corneal neuromas,also termed microneuromas,refer to microscopic,irregula rly-shaped enlargements of terminal subbasal nerve endings at sites of nerve damage or injury.The formation of corneal neuromas results from damage to corneal nerves,such as following corneal pathology or corneal or intraocular surge ries.Initially,denervated areas of sensory nerve fibers become invaded by sprouts of intact sensory nerve fibers,and later injured axons regenerate and new sprouts called neuromas develop.In recent years,analysis of corneal nerve abnormalities including corneal neuromas which can be identified using in vivo confocal microscopy,a non-invasive imaging technique with microscopic resolution,has been used to evaluate corneal neuropathy and ocular surface dysfunction.Corneal neuromas have been shown to be associated with clinical symptoms of discomfort and dryness of eyes,and are a promising surrogate biomarker for ocular surface diseases,such as neuropathic corneal pain,dry eye disease,diabetic corneal neuropathy,neurotrophic keratopathy,Sjogren's syndrome,bullous keratopathy,post-refra ctive surgery,and others.In this review,we have summarized the current literature on the association between these ocular surface diseases and the presentation of corneal microneuromas,as well as elaborated on their pathogenesis,visualization via in vivo confocal microscopy,and utility in monitoring treatment efficacy.As current quantitative analysis on neuromas mainly relies on manual annotation and quantification,which is user-dependent and labor-intensive,future direction includes the development of artificial intelligence software to identify and quantify these potential imaging biomarkers in a more automated and sensitive manner,allowing it to be applied in clinical settings more efficiently.Combining imaging and molecular biomarkers may also help elucidate the associations between corneal neuromas and ocular surface diseases.
基金Supported by the National Natural Science Foundation of China,No.81900533Science and Technology Project of Henan Science and Technology Department,No.232102520032。
文摘Autophagy is a cellular catabolic process characterized by the formation of double-membrane autophagosomes.Transmission electron microscopy is the most rigorous method to clearly visualize autophagic engulfment and degradation.A large number of studies have shown that autophagy is closely related to the digestion,secretion,and regeneration of gastrointestinal(GI)cells.However,the role of autophagy in GI diseases remains controversial.This article focuses on the morphological and biochemical characteristics of autophagy in GI diseases,in order to provide new ideas for their diagnosis and treatment.
基金supported by NIH R01NS103981 and R01CA273586(to CW)。
文摘Autophagy is a multifaceted cellular process that not only maintains the homeostatic and adaptive responses of the brain but is also dynamically involved in the regulation of neural cell generation,maturation,and survival.Autophagy facilities the utilization of energy and the microenvironment for developing neural stem cells.Autophagy arbitrates structural and functional remodeling during the cell differentiation process.Autophagy also plays an indispensable role in the maintenance of stemness and homeostasis in neural stem cells during essential brain physiology and also in the instigation and progression of diseases.Only recently,studies have begun to shed light on autophagy regulation in glia(microglia,astrocyte,and oligodendrocyte)in the brain.Glial cells have attained relatively less consideration despite their unquestioned influence on various aspects of neural development,synaptic function,brain metabolism,cellular debris clearing,and restoration of damaged or injured tissues.Thus,this review composes pertinent information regarding the involvement of autophagy in neural stem cells and glial regulation and the role of this connexion in normal brain functions,neurodevelopmental disorders,and neurodegenerative diseases.This review will provide insight into establishing a concrete strategic approach for investigating pathological mechanisms and developing therapies for brain diseases.
基金financially supported by the National Natural Science Foundation of China,No.32002235(to MT)the Science and Technology Foundation of Taian of Shandong Province,No.2020NS216(to XL)。
文摘A growing body of evidence suggests that the gut microbiota contributes to the development of neurodegenerative diseases via the microbiota-gut-brain axis.As a contributing factor,microbiota dysbiosis always occurs in pathological changes of neurodegenerative diseases,such as Alzheimer’s disease,Parkinson’s disease,and amyotrophic lateral sclerosis.High-throughput sequencing technology has helped to reveal that the bidirectional communication between the central nervous system and the enteric nervous system is facilitated by the microbiota’s diverse microorganisms,and for both neuroimmune and neuroendocrine systems.Here,we summarize the bioinformatics analysis and wet-biology validation for the gut metagenomics in neurodegenerative diseases,with an emphasis on multi-omics studies and the gut virome.The pathogen-associated signaling biomarkers for identifying brain disorders and potential therapeutic targets are also elucidated.Finally,we discuss the role of diet,prebiotics,probiotics,postbiotics and exercise interventions in remodeling the microbiome and reducing the symptoms of neurodegenerative diseases.
文摘Infectious diseases are the common enemies of mankind.In the course of historical development,they persistently threaten human health and safety.Even today,despite the developments in medical science,we cannot escape the fear and suffering caused by infectious diseases.Whether in ancient or modern times,the source of infection,route of transmission,and a susceptible population are the three key conditions for the prevalence and spread of infectious diseases.All factors closely related to these three conditions can affect the prevalence of infectious diseases.China is one of the cradles of world civilization.The ancient people accumulated a great deal of experience and lessons in the long struggle against infectious diseases.In the face of the current threat posed by widespread infectious disease,it is imperative to review and summarize ancient Chinese ideas and health policies on epidemic prevention and control to inspire contemporary efforts in the prevention and control of infectious disease.The combination of prevention-oriented epidemic prevention ideology and traditional medicine provides valuable insights,especially for impoverished and medically underserved regions.
文摘In this editorial we comment on the article titled“Inflammatory bowel diseases patients suffer from significant low levels and barriers to physical activity:The BE-FIT-IBD study”published in a recent issue of the World Journal of Gastroen-terology 2023;29(41):5668-5682.Inflammatory bowel diseases(IBD)are emerging as a significant global health concern as their incidence continues to rise on a global scale,with detrimental impacts on quality of life.While many advances have been made regarding the management of the disease,physical inactivity in these patients represents an underexplored issue that may hold the key for further and better understanding the ramifications of IBD.Chronic pain,fatigue,and fear of exacerbating symptoms promotes physical inactivity among IBD patients,while the lack of clear guidelines on safe exercise regimens contributes to a norm of physical inactivity.Physical activity(PA)is accepted to have a positive effect on disease outcomes and quality of life,while inactivity exacerbates comorbidities like cardiovascular disease and mental health disorders.The“BE-FIT-IBD”study,focusing on PA levels and barriers in IBD patients of Southern Italy,revealed that a significant proportion(42.9%)were physically inactive.This lack of PA is attributed to barriers such as fear of flare-ups and misconceptions about exercise exacerbating the disease.The study also highlighted the need for better communication between healthcare providers and patients regarding the benefits of PA and safe incorporation into lifestyles.Moreover,physical inactivity may also contribute to disability in IBD patients,having a great impact on employment status.Of note is the fact that IBD also comes with an important psychological burden with relevant evidence suggesting that regular PA can improve mood,reduce anxiety,and enhance mental health.The“BE-FIT-IBD”study advocated for the integration of PA into IBD management,emphasizing the bidirectional link between PA and IBD.Regular exercise can influence the course of IBD,potentially reducing symptom severity and prolonging remission periods.As such,it is mandatory that healthcare providers actively educate patients,dispel misconceptions,and tailor exercise recommendations to improve the quality of life and reduce IBD-related complications.