This study aimed to make an orientation for the development of Zhenjiang Pearl S.Buck tourism products.According to the spatial structure styles of tourism products,this paper discussed the exploitation of Zhenjiang P...This study aimed to make an orientation for the development of Zhenjiang Pearl S.Buck tourism products.According to the spatial structure styles of tourism products,this paper discussed the exploitation of Zhenjiang Pearl S.Buck tourism products from the perspective of spot products,linear products and network products.It expanded the Pearl S.Buck research to tourism science field and put forward some ideas of promoting the comprehensive benefits of Pearl S.Buck tourism resource as well as the exploitation of similar tourism products.展开更多
Among the most fascinating mysteries of life is the interaction between biological systems and the earth's magnetic field. Although earth's magnetism may have an under appreciated role in biological interpretations,...Among the most fascinating mysteries of life is the interaction between biological systems and the earth's magnetic field. Although earth's magnetism may have an under appreciated role in biological interpretations, it has been most extensively studied in the processes of avian orientation and migration. Many species of bird are known to have behavioral responses to the earth's and artificial magnetic fields. These responses may be mediated by a number of potential magneto-biochemical processes. The two most commonly investigated include a magnetosensitive magnetite rich region in the upper beak area and a photo/magnetoreception process in the eyes of various bird species. In addition to external magnetic stimuli, recent findings in visually restricted birds have described a hemispherically lateralized interpretation of this information within the brain. Even with these findings, a considerable amount of work is needed to clarify what information is processed and how it is used to create the bird's magnetic compass. This review focuses these recently published findings as a means to assess this intriguing phenomenon.展开更多
The rapid expansion of enterprises makes product collaborative design (PCD) a critical issue under the distributed heterogeneous environment, but as the collaborative task of large-scale network becomes more complic...The rapid expansion of enterprises makes product collaborative design (PCD) a critical issue under the distributed heterogeneous environment, but as the collaborative task of large-scale network becomes more complicated, neither unified task decomposition and allocation methodology nor Agent-based network management platform can satisfy the increasing demands. In this paper, to meet requirements of PCD for distributed product development, a collaborative design mechanism based on the thought of modularity and the Agent technology is presented. First, the top-down 4-tier process model based on task-oriented modular and Agent is constructed for PCD after analyzing the mapping relationships between requirements and functions in the collaborative design. Second, on basis of sub-task decomposition for PCD based on a mixed method, the mathematic model of task-oriented modular based on multi-objective optimization is established to maximize the module cohesion degree and minimize the module coupling degree, while considering the module executable degree as a restriction. The mathematic model is optimized and simulated by the modified PSO, and the decomposed modules are obtained. Finally, the Agent structure model for collaborative design is put forward, and the optimism matching Agents are selected by using similarity algorithm to implement different task-modules by the integrated reasoning and decision-making mechanism with the behavioral model of collaborative design Agents. With the results of experimental studies for automobile collaborative design, the feasibility and efficiency of this methodology of task-oriented modular and Agent-based collaborative design in the distributed heterogeneous environment are verified. On this basis, an integrative automobile collaborative R&D platform is developed. This research provides an effective platform for automobile manufacturing enterprises to achieve PCD, and helps to promote product numeralization collaborative R&D and management development.展开更多
Carbon Nanotubes (CNTs) have exceptional mechanical properties. They are the stiffest and strongest material, yet discovered, because of their high length to diameter ratio. In this paper a Representative Volume Eleme...Carbon Nanotubes (CNTs) have exceptional mechanical properties. They are the stiffest and strongest material, yet discovered, because of their high length to diameter ratio. In this paper a Representative Volume Element (RVE) model of CNT-silk composite is made. Then the orientations of the CNTs in the composite are varied and the effects of this variation are observed. The change is mainly observed between the interfaces of CNT and silk. Also there is a change in Young’s Modulus. COMSOL Multiphysics 4.2a is used for building model and performing simulations.展开更多
Euler’s rotation theorem and tensor rotation technique are applied to develop a generalized mathematical model for determining photoelastic constants in arbitrary orientation of cubic crystal system. Two times rotati...Euler’s rotation theorem and tensor rotation technique are applied to develop a generalized mathematical model for determining photoelastic constants in arbitrary orientation of cubic crystal system. Two times rotations are utilized in the model relating to crystallographic coordinates with Cartesian coordinates. The symmetry of photoelastic constants is found to have strong dependence with rotation angle. Using the model, one can determine photoelastic constants in any orientation by selecting appropriate rotation angle. The outcome of this study helps to characterize spatial variation of residual strain in crystalline as well as polycrystalline materials having cubic structure using the experimental technique known as scanning infrared polariscope.展开更多
Agent-oriented approach is increasingly showing its magic power in a diversity of fields, specifically, ubiquitous computing and smart environment. Meanwhile, it is considered the next creative issue is to interconnec...Agent-oriented approach is increasingly showing its magic power in a diversity of fields, specifically, ubiquitous computing and smart environment. Meanwhile, it is considered the next creative issue is to interconnect and integrate isolated smart spaces in real world together into a higher level space known as a hyperspace. In this paper, an agent-oriented architecture, which involves the techniques of mobile agents, middleware, and embedded artificial intelligence, is proposed. Detailed implementations describe our efforts on the design of terminal device, user interface, agents, and AI展开更多
文摘This study aimed to make an orientation for the development of Zhenjiang Pearl S.Buck tourism products.According to the spatial structure styles of tourism products,this paper discussed the exploitation of Zhenjiang Pearl S.Buck tourism products from the perspective of spot products,linear products and network products.It expanded the Pearl S.Buck research to tourism science field and put forward some ideas of promoting the comprehensive benefits of Pearl S.Buck tourism resource as well as the exploitation of similar tourism products.
文摘Among the most fascinating mysteries of life is the interaction between biological systems and the earth's magnetic field. Although earth's magnetism may have an under appreciated role in biological interpretations, it has been most extensively studied in the processes of avian orientation and migration. Many species of bird are known to have behavioral responses to the earth's and artificial magnetic fields. These responses may be mediated by a number of potential magneto-biochemical processes. The two most commonly investigated include a magnetosensitive magnetite rich region in the upper beak area and a photo/magnetoreception process in the eyes of various bird species. In addition to external magnetic stimuli, recent findings in visually restricted birds have described a hemispherically lateralized interpretation of this information within the brain. Even with these findings, a considerable amount of work is needed to clarify what information is processed and how it is used to create the bird's magnetic compass. This review focuses these recently published findings as a means to assess this intriguing phenomenon.
基金Supported by National Science and Technology Major Project of China(Grant No.2009ZX04014-103)PhD Programs Foundation of Ministry of Education of China(Grant No.20100072110038)+1 种基金National Natural Science Foundation of China(Grant Nos.61075064,61034004,61005090)Program for New Century Excellent Talents in University of Ministry of Education of China(Grant No.NECT-10-0633)
文摘The rapid expansion of enterprises makes product collaborative design (PCD) a critical issue under the distributed heterogeneous environment, but as the collaborative task of large-scale network becomes more complicated, neither unified task decomposition and allocation methodology nor Agent-based network management platform can satisfy the increasing demands. In this paper, to meet requirements of PCD for distributed product development, a collaborative design mechanism based on the thought of modularity and the Agent technology is presented. First, the top-down 4-tier process model based on task-oriented modular and Agent is constructed for PCD after analyzing the mapping relationships between requirements and functions in the collaborative design. Second, on basis of sub-task decomposition for PCD based on a mixed method, the mathematic model of task-oriented modular based on multi-objective optimization is established to maximize the module cohesion degree and minimize the module coupling degree, while considering the module executable degree as a restriction. The mathematic model is optimized and simulated by the modified PSO, and the decomposed modules are obtained. Finally, the Agent structure model for collaborative design is put forward, and the optimism matching Agents are selected by using similarity algorithm to implement different task-modules by the integrated reasoning and decision-making mechanism with the behavioral model of collaborative design Agents. With the results of experimental studies for automobile collaborative design, the feasibility and efficiency of this methodology of task-oriented modular and Agent-based collaborative design in the distributed heterogeneous environment are verified. On this basis, an integrative automobile collaborative R&D platform is developed. This research provides an effective platform for automobile manufacturing enterprises to achieve PCD, and helps to promote product numeralization collaborative R&D and management development.
文摘Carbon Nanotubes (CNTs) have exceptional mechanical properties. They are the stiffest and strongest material, yet discovered, because of their high length to diameter ratio. In this paper a Representative Volume Element (RVE) model of CNT-silk composite is made. Then the orientations of the CNTs in the composite are varied and the effects of this variation are observed. The change is mainly observed between the interfaces of CNT and silk. Also there is a change in Young’s Modulus. COMSOL Multiphysics 4.2a is used for building model and performing simulations.
文摘Euler’s rotation theorem and tensor rotation technique are applied to develop a generalized mathematical model for determining photoelastic constants in arbitrary orientation of cubic crystal system. Two times rotations are utilized in the model relating to crystallographic coordinates with Cartesian coordinates. The symmetry of photoelastic constants is found to have strong dependence with rotation angle. Using the model, one can determine photoelastic constants in any orientation by selecting appropriate rotation angle. The outcome of this study helps to characterize spatial variation of residual strain in crystalline as well as polycrystalline materials having cubic structure using the experimental technique known as scanning infrared polariscope.
文摘Agent-oriented approach is increasingly showing its magic power in a diversity of fields, specifically, ubiquitous computing and smart environment. Meanwhile, it is considered the next creative issue is to interconnect and integrate isolated smart spaces in real world together into a higher level space known as a hyperspace. In this paper, an agent-oriented architecture, which involves the techniques of mobile agents, middleware, and embedded artificial intelligence, is proposed. Detailed implementations describe our efforts on the design of terminal device, user interface, agents, and AI