The Mutis-Timau Forest Complex,located on Timor Island,Indonesia,is a mountainous tropical forest area that gradually decreases due to deforestation and forest degradation.Previous modelling studies based on patterns ...The Mutis-Timau Forest Complex,located on Timor Island,Indonesia,is a mountainous tropical forest area that gradually decreases due to deforestation and forest degradation.Previous modelling studies based on patterns indicate that deforestation primarily occurs at lower elevations and near the boundaries of forests and settlements,often associated with shifting cultivation by local farmers.This study adopts a process-based modelling approach,specifically the agent-based model,to simulate land changes,particularly farmers'expansion of agricultural land around the Mutis mountain forest.The underlying concept of this agent-based approach is the interaction between the human and environmental systems.Farmers,representing the human system,interact with the land,which represents the environmental system,through land use decision-making mechanisms.The research was conducted in the Community Forest of the Timor Tengah Utara District,one of the sites within the Mutis-Timau Forest Complex with the highest deforestation rate.Land use change simulations were performed using agent-based modelling from 1999 to 2030,considering the socio-economic conditions of farmers,spatial preferences,land use decisions,and natural transitions.The results revealed that the agricultural area increased by 14%under the Business as Usual scenario and 5%under the Reducing Emission from Deforestation and Forest Degradation scenario,compared to the initial agricultural area of 245 hectares.The probability of farmers deciding to extend agricultural activities was positively associated with the number of livestock maintained by farmers and the size of the village area.Conversely,the likelihood of farmers opting for agricultural extensification decreased with an increase in the area of private land and the farmer's age.These findings are crucial for the managers of the Mutis-Timau Forest Complex and other relevant stakeholders,as they aid in arranging actions to combat deforestation,designing proper forest-related policies,and providing support for initiatives such as reducing emissions from deforestation and forest degradation programs or further incentive schemes.展开更多
Accurate assessment of crowd evacuation inside the post-earthquake environment is critical from many perspectives,but this issue receives much less attention compared to the seismic losses of structural and non-struct...Accurate assessment of crowd evacuation inside the post-earthquake environment is critical from many perspectives,but this issue receives much less attention compared to the seismic losses of structural and non-structural components.This could be attributed to the fact that post-earthquake evacuation analysis is complex due to the interaction between human behavior and the actual built environment induced by different building contents.This study attempts to tackle this problem by investigating the impacts of different building contents on post-earthquake evacuation time by using an agent-based model that considers turning behavior.To this end,the agent-based model is first described,including:properties of the agent-based model with turning behavior,key aspects in its formulation considering different evacuation stages,and influence of different building contents(namely,debris from partition walls and ceiling systems,and various types of equipment)on the agent’s behavior.Subsequently,a school building is used as a benchmark problem to validate the model without earthquake,and the findings indicate that the agent-based model can match the real safety drill results reasonably well.After the validation,the school building is subsequently designed in accordance with modern seismic design codes,and the influence of debris and equipment on post-earthquake evacuation time is quantitatively studied using a suite of pulse-type ground motions as input.Based on this case study,recommendations are made for structural and architectural designers in an effort to reduce the potential evacuation time.Specifically,debris induced by partition walls or ceiling systems should be controlled as it has the greatest impact on the total evacuation time.展开更多
Top-down environmental policies aim to mitigate environmental risks but inevitably lead to economic losses due to the market entry or exit of enterprises.This study developed a universal dynamic agent-based supply cha...Top-down environmental policies aim to mitigate environmental risks but inevitably lead to economic losses due to the market entry or exit of enterprises.This study developed a universal dynamic agent-based supply chain model to achieve tradeoffs between environmental risk reduction and economic sus-tainability.The model was used to conduct high-resolution daily simulations of the dynamic shifts in enterprise operations and their cascading effects on supply chain networks.It includes production,con-sumption,and transportation agents,attributing economic features to supply chain components and cap-turing their interactions.It also accounts for adaptive responses to daily external shocks and replicates realistic firm behaviors.By coupling high spatial-temporal resolution firm-level data from 18916 chemical enterprises,this study investigates the economic and environmental impacts of an environmen-tal policy resulting in the closure of 1800 chemical enterprises over three years.The results revealed a significant economic loss of 25.8 billion USD,ranging from 23.8 billion to 31.8 billion USD.Notably,over 80%of this loss was attributed to supply chain propagation.Counterfactual analyses indicated that imple-menting a staggered shutdown strategy prevented 18.8%of supply chain losses,highlighting the impor-tance of a gradual policy implementation to prevent abrupt supply chain disruptions.Furthermore,the study highlights the effectiveness of a multi-objective policy design in reducing economic losses(about 29%)and environmental risks(about 40%),substantially enhancing the efficiency of the environmental policy.The high-resolution simulations provide valuable insights for policy designers to formulate strategies with staggered implementation and multiple objectives to mitigate supply chain losses and environmental risks and ensure a sustainable future.展开更多
Dominant technology formation is the key for the hightech industry to“cross the chasm”and gain an established foothold in the market(and hence disrupt the regime).Therefore,a stimulus-response model is proposed to i...Dominant technology formation is the key for the hightech industry to“cross the chasm”and gain an established foothold in the market(and hence disrupt the regime).Therefore,a stimulus-response model is proposed to investigate the dominant technology by exploring its formation process and mechanism.Specifically,based on complex adaptive system theory and the basic stimulus-response model,we use a combination of agent-based modeling and system dynamics modeling to capture the interactions between dominant technology and the socio-technical landscape.The results indicate the following:(i)The dynamic interaction is“stimulus-reaction-selection”,which promotes the dominant technology’s formation.(ii)The dominant technology’s formation can be described as a dynamic process in which the adaptation intensity of technology standards increases continuously until it becomes the leading technology under the dual action of internal and external mechanisms.(iii)The dominant technology’s formation in the high-tech industry is influenced by learning ability,the number of adopting users and adaptability.Therein,a“critical scale”of learning ability exists to promote the formation of leading technology:a large number of adopting users can promote the dominant technology’s formation by influencing the adaptive response of technology standards to the socio-technical landscape and the choice of technology standards by the socio-technical landscape.There is a minimum threshold and a maximum threshold for the role of adaptability in the dominant technology’s formation.(iv)The socio-technical landscape can promote the leading technology’s shaping in the high-tech industry,and different elements have different effects.This study promotes research on the formation mechanism of dominant technology in the high-tech industry,presents new perspectives and methods for researchers,and provides essential enlightenment for managers to formulate technology strategies.展开更多
A large number of communities are impacted annually by the increasing frequency of tornado hazards resulting in damage to the infrastructure as well as disruption of community functions.The effect of the hazard geomet...A large number of communities are impacted annually by the increasing frequency of tornado hazards resulting in damage to the infrastructure as well as disruption of community functions.The effect of the hazard geometry(center and angle of tornado path as well as the tornado width)is studied herein on how it influences the recovery of physical and social systems within the community.Given that pre-disaster preparedness including mitigation strategies(e.g.,retrofits)and policies(e.g.,insurance)is crucial for increasing the resilience of the community and facilitating a faster recovery process,in this study,the impact of various mitigation strategies and policies on the recovery trajectory and resilience of a typical US community subjected to a tornado is investigated considering different sources of uncertainties.The virtual testbed of Centerville is selected in this paper and is modeled by adopting the Agent-based modeling(ABM)approach which is a powerful tool for conducting community resilience analysis that simulates the behavior of different types of agents and their interactions to capture their interdependencies.The results are presented in the form of recovery time series as well as calculated resilience indices for various community systems(lifeline networks,schools,healthcare,businesses,and households).The results of this study can help deepen our understanding of how to efficiently expedite the recovery process of a community.展开更多
Forward osmosis(FO), as an emerging technology, is influenced by different factors such as operating conditions,module characteristics, and membrane properties. The general aim of this study was to develop a suitable(...Forward osmosis(FO), as an emerging technology, is influenced by different factors such as operating conditions,module characteristics, and membrane properties. The general aim of this study was to develop a suitable(flexible,comprehensive, and convenient to use) computational tool which is able to simulate osmosis through an asymmetric membrane oriented in pressure retarded osmosis(PRO) mode in a wide variety of scenarios. For this purpose, an agent-based model was created in NetLogo platform, which is an easy-to-use application environment with graphical visualization abilities and well suited for modeling a complex system evolving over time. The simulation results were validated with empirical data obtained from literature and a great agreement was observed. The effect of various parameters on process performance was investigated in terms of temperature,cross-flow velocity, length of the module, pure water permeability coefficient, and structural parameter of the membrane. Results demonstrated that the increase in all parameters, except structural parameter of the membrane and the length of module led to the increase of average water flux. Moreover, nine different draw solutes were selected in order to assess the influence of net bulk osmotic pressure difference between the draw solution(DS) and feed solution(FS)(known as the driving force of FO process) on water flux. Based on the findings of this paper, the performance of FO process(PRO mode) can be efficiently evaluated using the NetL ogo platform.展开更多
This work re-examined the simulation result of game analysis (Joshi et al., 2000) based on an agent-based model, Santa Fe Institute Artificial Stock Market. Allowing for recent research work on this artificial model, ...This work re-examined the simulation result of game analysis (Joshi et al., 2000) based on an agent-based model, Santa Fe Institute Artificial Stock Market. Allowing for recent research work on this artificial model, this paper’s modified game simulations found that the dividend amplitude parameter is a crucial factor and that the original conclusion still holds in a not long period, but only when the dividend amplitude is large enough. Our explanation of this result is that the dividend amplitude pa- rameter is a measurement of market uncertainty. The greater the uncertainty, the greater the price volatility, and so is the risk of investing in the stock market. The greater the risk, the greater the advantage of including technical rules.展开更多
Ulcerative colitis, an inflammatory bowel disease, is a chronic inflammatory disorder that results in ulcers of the colon and rectum without known etiology. Ulcerative colitis causes a huge public health care burden p...Ulcerative colitis, an inflammatory bowel disease, is a chronic inflammatory disorder that results in ulcers of the colon and rectum without known etiology. Ulcerative colitis causes a huge public health care burden particularly in developed countries. Many studies suggest that ulcerative colitis results from an abnormal immune response against components of cornrnensal rnicrobiota in genetically susceptible individuals. However, understanding of the disease mechanisms at cellular and molecular levels remains largely elusive. In this paper, a network model is developed based on our previous study and computer simulations are perforrned using an agent-based network modeling to elucidate the dynamics of immune response in ulcerative colitis progression. Our modeling study identifies several important positive feedback loops as a driving force for ulcerative colitis initiation and progression. The results demonstrate that although immune response in ulcerative colitis patients is dominated by anti-inflarnrnatory/regulatory cells such as alternatively activated rnacrophages and type II natural killer T cells, proinflarnrnatory cells including classically activated rnacrophages, T helper 1 and T helper 17 cells, and their secreted cytokines tumor necrosis factor-α, interleukin-12, interleukin-23, interleukin-17 and interferon-γ remain at certain levels (lower than those in Crohn's disease, another inflammatory bowel disease). Long-terrn exposure to these proinflarnrnatory components, causes rnucosal tissue damage persistently, leading to ulcerative colitis. Our simulation results are qualitatively in agreement with clinical and laboratory measurements, offering novel insight into the disease mechanisms.展开更多
Fraudulent actions of a trader or a group of traders can cause substantial disturbance to the market,both directly influencing the price of an asset or indirectly by misin-forming other market participants.Such behavi...Fraudulent actions of a trader or a group of traders can cause substantial disturbance to the market,both directly influencing the price of an asset or indirectly by misin-forming other market participants.Such behavior can be a source of systemic risk and increasing distrust for the market participants,consequences that call for viable countermeasures.Building on the foundations provided by the extant literature,this study aims to design an agent-based market model capable of reproducing the behavior of the Bitcoin market during the time of an alleged Bitcoin price manipulation that occurred between 2017 and early 2018.The model includes the mechanisms of a limit order book market and several agents associated with different trading strategies,including a fraudulent agent,initialized from empirical data and who performs market manipulation.The model is validated with respect to the Bitcoin price as well as the amount of Bitcoins obtained by the fraudulent agent and the traded volume.Simulation results provide a satisfactory fit to historical data.Several price dips and volume anomalies are explained by the actions of the fraudulent trader,completing the known body of evidence extracted from blockchain activity.The model suggests that the presence of the fraudulent agent was essential to obtain Bitcoin price development in the given time period;without this agent,it would have been very unlikely that the price had reached the heights as it did in late 2017.The insights gained from the model,especially the connection between liquidity and manipulation efficiency,unfold a discussion on how to prevent illicit behavior.展开更多
Agent-based models (ABMs) are capable of constructing individual system components at different levels of representation to describe non-linear relationships between those components. Compared to a traditional mathema...Agent-based models (ABMs) are capable of constructing individual system components at different levels of representation to describe non-linear relationships between those components. Compared to a traditional mathematical modeling approach, agent-based models have an inherent spatial component with which they can easily describe local interactions and environmental heterogeneity. Furthermore, agent-based model maps interactions among agents inherently to the biological phenomenon by embedding the stochastic nature and dynamics transitions, thereby demonstrating suitability for the development of complex biological processes. Recently, an abundance of literature has presented application of agent-based modeling in the biological system. This review focuses on application of agent-based modeling to progression in simulation of infectious disease in the human immune system and discusses advantages and disadvantages of agent-based modeling application. Finally, potential implementation of agent-based modeling in relation to infectious disease modeling in future research is explored.展开更多
Air pollution has considerable impact on human health and the wellbeing. Thus many regions of the world have established air pollution standards to ensure a minimum level of air quality. Precise assessment of the heal...Air pollution has considerable impact on human health and the wellbeing. Thus many regions of the world have established air pollution standards to ensure a minimum level of air quality. Precise assessment of the health and socio-economic impacts of air pollution is, however, a complex task;indeed, methods based within an epidemiological tradition generally underestimate human risk of exposure to polluted air. In this study, we introduce an agent-based modeling approach to ascertaining the impact of changes in particulate matter (PM10) on mortality and frequency of hospital visits in the greater metropolitan region of Sydney, Australia. Our modeling approach simulates human movement and behavioral patterns in order to obtain an accurate estimate of individual exposure to a pollutant. Results of our analysis indicate that a 50% reduction in PM10 levels (relative to the baseline) could considerably lower mortality, respiratory hospital admissions and emergency room visits leading to reduced pressure on health care sector costs and placing lower stress on emergency medical facilities. Our analysis also highlights the continued need to avoid significant increases in air pollution in Sydney so that associated health impacts, including health care costs, do not increase.展开更多
An agent-based simulation model hierarchy emulating disease states and behaviors critical to progression of diabetes type 2 was designed and implemented in the DEVS framework. This model was built to approximately rep...An agent-based simulation model hierarchy emulating disease states and behaviors critical to progression of diabetes type 2 was designed and implemented in the DEVS framework. This model was built to approximately reproduce some essential findings that were previously reported for a rather complex model of diabetes progression. Our models are translations of basicelements of this previously reported system dynamics model of diabetes. The system dynamics model, which mimics diabetes progression over an aggregated US population, was disaggregated and reconstructed bottom-up at the individual (agent) level. Four levels of model complexity were defined in order to systematically evaluate which parameters are needed to mimic outputs of the system dynamics model. The four estimated models attempted to replicate stock counts representing disease states in the system dynamics model while estimating impacts of an elderliness factor, obesity factor and health-related behavioral parameters. Health-related behavior was modeled as a simple realization of the Theory of Planned Behavior, a joint function of individual attitude and diffusion of social norms that spread over each agent’s social network. Although the most complex agent-based simulation model contained 31 adjustable parameters, all models were considerably less complex than the system dynamics model which required numerous time series inputs to make its predictions. All three elaborations of the baseline model provided significantly improved fits to the output of the system dynamics model, although behavioral factors appeared to contribute more than the elderliness factor. The results illustrate a promising approach to translate complex system dynamics models into agent-based model alternatives that are both conceptually simpler and capable of capturing main effects of complex local agent-agent interactions.展开更多
This paper presents an assessment of land use changes and their impacts on the ecosystem in the Montado, a traditional agricultural landscape of Portugal in response to global environmental change. The assessment uses...This paper presents an assessment of land use changes and their impacts on the ecosystem in the Montado, a traditional agricultural landscape of Portugal in response to global environmental change. The assessment uses an agent-based model (ABM) of the adaptive decisions of farmers to simulate the influence on future land use patterns of socio-economic attributes such as social relationships and farmer reliance on subsidies and biophysical constraints. The application and development of the ABM are supported empirically using three categories of input data: 1) farmer types based on a cluster analysis of socio-economic attributes;2) agricultural suitability based on regression analysis of historical land use maps and biophysical attributes;and 3) future trends in the economic and climatic environments based on the A1fi scenario of the Intergovernmental Panel on Climate Change. Model sensitivity and uncertainty analyses are carried out prior to the scenario analysis in order to verify the absence of systematic errors in the model structure. The results of the scenario analysis show that the area of Montado declines significantly by 2050, but it remains the dominant land use in the case study area, indicating some resilience to change. An important policy challenge arising from this assessment is how to encourage next generation of innovative farmers to conserve this traditional landscape for social and ecological values.展开更多
This paper collects and synthesizes the technical requirements, implementation, and validation methods for quasi-steady agent-based simulations of interconnectionscale models with particular attention to the integrati...This paper collects and synthesizes the technical requirements, implementation, and validation methods for quasi-steady agent-based simulations of interconnectionscale models with particular attention to the integration of renewable generation and controllable loads. Approaches for modeling aggregated controllable loads are presented and placed in the same control and economic modeling framework as generation resources for interconnection planning studies. Model performance is examined with system parameters that are typical for an interconnection approximately the size of the Western Electricity Coordinating Council(WECC) and a control area about 1/100 the size of the system. These results are used to demonstrate and validate the methods presented.展开更多
In combinatorics, a Stirling number of the second kind S (n,k)? is the number of ways to partition a set of n objects into k nonempty subsets. The empty subsets are also added in the models presented in the article in...In combinatorics, a Stirling number of the second kind S (n,k)? is the number of ways to partition a set of n objects into k nonempty subsets. The empty subsets are also added in the models presented in the article in order to describe properly the absence of the corresponding type i of state in the system, i.e. when its “share” Pi =0?. Accordingly, a new equation for partitions P (N, m)? in a set of entities into both empty and nonempty subsets was derived. The indistinguishableness of particles (N identical atoms or molecules) makes only sense within a cluster (subset) with the size?0≤ni ≥N. The first-order phase transition is indeed the case of transitions, for example in the simplest interpretation, from completely liquid state?typeL = {n1 =N, n2 = 0} to the completely crystalline state??typeC= {n1 =0, n2 = N }. These partitions are well distinguished from the physical point of view, so they are ‘typed’ differently in the model. Finally, the present developments in the physics of complex systems, in particular the structural relaxation of super-cooled liquids and glasses, are discussed by using such stochastic cluster-based models.展开更多
In the United States, emission regulations are enacted at a state level;individual states are allowed to define what methods they will use to mitigate their carbon emissions. The consequence of this is especially inte...In the United States, emission regulations are enacted at a state level;individual states are allowed to define what methods they will use to mitigate their carbon emissions. The consequence of this is especially interesting in the state of Texas where new legislation has created a “deregulated” electricity market in which end-users are capable of choosing their electricity provider and subsequently the type of electricity they wish to consume (generated by fossil fuels or renewable sources). In this paper we analyze the effects of carbon tax on the development of renewable generation capacity at the utility level while taking into account expected adoption of rooftop PV systems by individual consumers using agent based modeling techniques. Monte Carlo simulations show carbon abatement trends and proffer updated renewable portfolio standards at various levels of likelihood.展开更多
Computer programs have been categorized as a useful tool to evaluate the complexity of systems. In fact, agent-based modeling (ABM) is considered a new method to model complex systems characterized by the role of inde...Computer programs have been categorized as a useful tool to evaluate the complexity of systems. In fact, agent-based modeling (ABM) is considered a new method to model complex systems characterized by the role of independent and interrelating agents. Simulations contribute in estimating and comprehending emerging behaviors that require the development of new regulations for local agents that would make improvements to the system. This paper offers an example of a methodology and a process utilized to develop a simulation model named Befergyonet, an ABM used to conduct computer simulations within a spatio-intertemporal environment. The methodology discussed in this paper is intended solely to stimulate the use of innovative computer programs to simulate complex systems as an approach to represent real world events and may be a methodological guide for readers interested in developing their own ABM.展开更多
基金funded by the Ministry of Environment and Forestry of the Republic of Indonesia through the research funding assistance program。
文摘The Mutis-Timau Forest Complex,located on Timor Island,Indonesia,is a mountainous tropical forest area that gradually decreases due to deforestation and forest degradation.Previous modelling studies based on patterns indicate that deforestation primarily occurs at lower elevations and near the boundaries of forests and settlements,often associated with shifting cultivation by local farmers.This study adopts a process-based modelling approach,specifically the agent-based model,to simulate land changes,particularly farmers'expansion of agricultural land around the Mutis mountain forest.The underlying concept of this agent-based approach is the interaction between the human and environmental systems.Farmers,representing the human system,interact with the land,which represents the environmental system,through land use decision-making mechanisms.The research was conducted in the Community Forest of the Timor Tengah Utara District,one of the sites within the Mutis-Timau Forest Complex with the highest deforestation rate.Land use change simulations were performed using agent-based modelling from 1999 to 2030,considering the socio-economic conditions of farmers,spatial preferences,land use decisions,and natural transitions.The results revealed that the agricultural area increased by 14%under the Business as Usual scenario and 5%under the Reducing Emission from Deforestation and Forest Degradation scenario,compared to the initial agricultural area of 245 hectares.The probability of farmers deciding to extend agricultural activities was positively associated with the number of livestock maintained by farmers and the size of the village area.Conversely,the likelihood of farmers opting for agricultural extensification decreased with an increase in the area of private land and the farmer's age.These findings are crucial for the managers of the Mutis-Timau Forest Complex and other relevant stakeholders,as they aid in arranging actions to combat deforestation,designing proper forest-related policies,and providing support for initiatives such as reducing emissions from deforestation and forest degradation programs or further incentive schemes.
文摘Accurate assessment of crowd evacuation inside the post-earthquake environment is critical from many perspectives,but this issue receives much less attention compared to the seismic losses of structural and non-structural components.This could be attributed to the fact that post-earthquake evacuation analysis is complex due to the interaction between human behavior and the actual built environment induced by different building contents.This study attempts to tackle this problem by investigating the impacts of different building contents on post-earthquake evacuation time by using an agent-based model that considers turning behavior.To this end,the agent-based model is first described,including:properties of the agent-based model with turning behavior,key aspects in its formulation considering different evacuation stages,and influence of different building contents(namely,debris from partition walls and ceiling systems,and various types of equipment)on the agent’s behavior.Subsequently,a school building is used as a benchmark problem to validate the model without earthquake,and the findings indicate that the agent-based model can match the real safety drill results reasonably well.After the validation,the school building is subsequently designed in accordance with modern seismic design codes,and the influence of debris and equipment on post-earthquake evacuation time is quantitatively studied using a suite of pulse-type ground motions as input.Based on this case study,recommendations are made for structural and architectural designers in an effort to reduce the potential evacuation time.Specifically,debris induced by partition walls or ceiling systems should be controlled as it has the greatest impact on the total evacuation time.
基金supported by the National Natural Science Foundation of China(52200228 and 72022004)the China Postdoctoral Science Foundation(2022M721817)the National Key Scientific Research Project(2021YFC3200200).
文摘Top-down environmental policies aim to mitigate environmental risks but inevitably lead to economic losses due to the market entry or exit of enterprises.This study developed a universal dynamic agent-based supply chain model to achieve tradeoffs between environmental risk reduction and economic sus-tainability.The model was used to conduct high-resolution daily simulations of the dynamic shifts in enterprise operations and their cascading effects on supply chain networks.It includes production,con-sumption,and transportation agents,attributing economic features to supply chain components and cap-turing their interactions.It also accounts for adaptive responses to daily external shocks and replicates realistic firm behaviors.By coupling high spatial-temporal resolution firm-level data from 18916 chemical enterprises,this study investigates the economic and environmental impacts of an environmen-tal policy resulting in the closure of 1800 chemical enterprises over three years.The results revealed a significant economic loss of 25.8 billion USD,ranging from 23.8 billion to 31.8 billion USD.Notably,over 80%of this loss was attributed to supply chain propagation.Counterfactual analyses indicated that imple-menting a staggered shutdown strategy prevented 18.8%of supply chain losses,highlighting the impor-tance of a gradual policy implementation to prevent abrupt supply chain disruptions.Furthermore,the study highlights the effectiveness of a multi-objective policy design in reducing economic losses(about 29%)and environmental risks(about 40%),substantially enhancing the efficiency of the environmental policy.The high-resolution simulations provide valuable insights for policy designers to formulate strategies with staggered implementation and multiple objectives to mitigate supply chain losses and environmental risks and ensure a sustainable future.
基金supported by the Shanghai Philosophy and Social Science Foundation(2022ECK004)Shanghai Soft Science Research Project(23692123400)。
文摘Dominant technology formation is the key for the hightech industry to“cross the chasm”and gain an established foothold in the market(and hence disrupt the regime).Therefore,a stimulus-response model is proposed to investigate the dominant technology by exploring its formation process and mechanism.Specifically,based on complex adaptive system theory and the basic stimulus-response model,we use a combination of agent-based modeling and system dynamics modeling to capture the interactions between dominant technology and the socio-technical landscape.The results indicate the following:(i)The dynamic interaction is“stimulus-reaction-selection”,which promotes the dominant technology’s formation.(ii)The dominant technology’s formation can be described as a dynamic process in which the adaptation intensity of technology standards increases continuously until it becomes the leading technology under the dual action of internal and external mechanisms.(iii)The dominant technology’s formation in the high-tech industry is influenced by learning ability,the number of adopting users and adaptability.Therein,a“critical scale”of learning ability exists to promote the formation of leading technology:a large number of adopting users can promote the dominant technology’s formation by influencing the adaptive response of technology standards to the socio-technical landscape and the choice of technology standards by the socio-technical landscape.There is a minimum threshold and a maximum threshold for the role of adaptability in the dominant technology’s formation.(iv)The socio-technical landscape can promote the leading technology’s shaping in the high-tech industry,and different elements have different effects.This study promotes research on the formation mechanism of dominant technology in the high-tech industry,presents new perspectives and methods for researchers,and provides essential enlightenment for managers to formulate technology strategies.
基金Financial support for this work was provided by the US Department of Commerce,National Institute of Standards and Technology(NIST)under the Financial Assistance Award Number(FAIN)#70NANB20H008.
文摘A large number of communities are impacted annually by the increasing frequency of tornado hazards resulting in damage to the infrastructure as well as disruption of community functions.The effect of the hazard geometry(center and angle of tornado path as well as the tornado width)is studied herein on how it influences the recovery of physical and social systems within the community.Given that pre-disaster preparedness including mitigation strategies(e.g.,retrofits)and policies(e.g.,insurance)is crucial for increasing the resilience of the community and facilitating a faster recovery process,in this study,the impact of various mitigation strategies and policies on the recovery trajectory and resilience of a typical US community subjected to a tornado is investigated considering different sources of uncertainties.The virtual testbed of Centerville is selected in this paper and is modeled by adopting the Agent-based modeling(ABM)approach which is a powerful tool for conducting community resilience analysis that simulates the behavior of different types of agents and their interactions to capture their interdependencies.The results are presented in the form of recovery time series as well as calculated resilience indices for various community systems(lifeline networks,schools,healthcare,businesses,and households).The results of this study can help deepen our understanding of how to efficiently expedite the recovery process of a community.
文摘Forward osmosis(FO), as an emerging technology, is influenced by different factors such as operating conditions,module characteristics, and membrane properties. The general aim of this study was to develop a suitable(flexible,comprehensive, and convenient to use) computational tool which is able to simulate osmosis through an asymmetric membrane oriented in pressure retarded osmosis(PRO) mode in a wide variety of scenarios. For this purpose, an agent-based model was created in NetLogo platform, which is an easy-to-use application environment with graphical visualization abilities and well suited for modeling a complex system evolving over time. The simulation results were validated with empirical data obtained from literature and a great agreement was observed. The effect of various parameters on process performance was investigated in terms of temperature,cross-flow velocity, length of the module, pure water permeability coefficient, and structural parameter of the membrane. Results demonstrated that the increase in all parameters, except structural parameter of the membrane and the length of module led to the increase of average water flux. Moreover, nine different draw solutes were selected in order to assess the influence of net bulk osmotic pressure difference between the draw solution(DS) and feed solution(FS)(known as the driving force of FO process) on water flux. Based on the findings of this paper, the performance of FO process(PRO mode) can be efficiently evaluated using the NetL ogo platform.
基金Project supported by the Talent Project Foundation of Zhejiang Province, China
文摘This work re-examined the simulation result of game analysis (Joshi et al., 2000) based on an agent-based model, Santa Fe Institute Artificial Stock Market. Allowing for recent research work on this artificial model, this paper’s modified game simulations found that the dividend amplitude parameter is a crucial factor and that the original conclusion still holds in a not long period, but only when the dividend amplitude is large enough. Our explanation of this result is that the dividend amplitude pa- rameter is a measurement of market uncertainty. The greater the uncertainty, the greater the price volatility, and so is the risk of investing in the stock market. The greater the risk, the greater the advantage of including technical rules.
基金supported by the National Natural Science Foundation of China (No.21273209)
文摘Ulcerative colitis, an inflammatory bowel disease, is a chronic inflammatory disorder that results in ulcers of the colon and rectum without known etiology. Ulcerative colitis causes a huge public health care burden particularly in developed countries. Many studies suggest that ulcerative colitis results from an abnormal immune response against components of cornrnensal rnicrobiota in genetically susceptible individuals. However, understanding of the disease mechanisms at cellular and molecular levels remains largely elusive. In this paper, a network model is developed based on our previous study and computer simulations are perforrned using an agent-based network modeling to elucidate the dynamics of immune response in ulcerative colitis progression. Our modeling study identifies several important positive feedback loops as a driving force for ulcerative colitis initiation and progression. The results demonstrate that although immune response in ulcerative colitis patients is dominated by anti-inflarnrnatory/regulatory cells such as alternatively activated rnacrophages and type II natural killer T cells, proinflarnrnatory cells including classically activated rnacrophages, T helper 1 and T helper 17 cells, and their secreted cytokines tumor necrosis factor-α, interleukin-12, interleukin-23, interleukin-17 and interferon-γ remain at certain levels (lower than those in Crohn's disease, another inflammatory bowel disease). Long-terrn exposure to these proinflarnrnatory components, causes rnucosal tissue damage persistently, leading to ulcerative colitis. Our simulation results are qualitatively in agreement with clinical and laboratory measurements, offering novel insight into the disease mechanisms.
基金provided by Marie Sklodowska-Curie ITN Horizon 2020-funded project INSIGHTS(call H2020-MSCA-ITN-2017,grant agreement n.765710)NWO—Nederlandse Organisatie voor Wetenschappelijk Onderzoek(Award Number:KIVI.2019.006 HUMAINER AI project)。
文摘Fraudulent actions of a trader or a group of traders can cause substantial disturbance to the market,both directly influencing the price of an asset or indirectly by misin-forming other market participants.Such behavior can be a source of systemic risk and increasing distrust for the market participants,consequences that call for viable countermeasures.Building on the foundations provided by the extant literature,this study aims to design an agent-based market model capable of reproducing the behavior of the Bitcoin market during the time of an alleged Bitcoin price manipulation that occurred between 2017 and early 2018.The model includes the mechanisms of a limit order book market and several agents associated with different trading strategies,including a fraudulent agent,initialized from empirical data and who performs market manipulation.The model is validated with respect to the Bitcoin price as well as the amount of Bitcoins obtained by the fraudulent agent and the traded volume.Simulation results provide a satisfactory fit to historical data.Several price dips and volume anomalies are explained by the actions of the fraudulent trader,completing the known body of evidence extracted from blockchain activity.The model suggests that the presence of the fraudulent agent was essential to obtain Bitcoin price development in the given time period;without this agent,it would have been very unlikely that the price had reached the heights as it did in late 2017.The insights gained from the model,especially the connection between liquidity and manipulation efficiency,unfold a discussion on how to prevent illicit behavior.
文摘Agent-based models (ABMs) are capable of constructing individual system components at different levels of representation to describe non-linear relationships between those components. Compared to a traditional mathematical modeling approach, agent-based models have an inherent spatial component with which they can easily describe local interactions and environmental heterogeneity. Furthermore, agent-based model maps interactions among agents inherently to the biological phenomenon by embedding the stochastic nature and dynamics transitions, thereby demonstrating suitability for the development of complex biological processes. Recently, an abundance of literature has presented application of agent-based modeling in the biological system. This review focuses on application of agent-based modeling to progression in simulation of infectious disease in the human immune system and discusses advantages and disadvantages of agent-based modeling application. Finally, potential implementation of agent-based modeling in relation to infectious disease modeling in future research is explored.
文摘Air pollution has considerable impact on human health and the wellbeing. Thus many regions of the world have established air pollution standards to ensure a minimum level of air quality. Precise assessment of the health and socio-economic impacts of air pollution is, however, a complex task;indeed, methods based within an epidemiological tradition generally underestimate human risk of exposure to polluted air. In this study, we introduce an agent-based modeling approach to ascertaining the impact of changes in particulate matter (PM10) on mortality and frequency of hospital visits in the greater metropolitan region of Sydney, Australia. Our modeling approach simulates human movement and behavioral patterns in order to obtain an accurate estimate of individual exposure to a pollutant. Results of our analysis indicate that a 50% reduction in PM10 levels (relative to the baseline) could considerably lower mortality, respiratory hospital admissions and emergency room visits leading to reduced pressure on health care sector costs and placing lower stress on emergency medical facilities. Our analysis also highlights the continued need to avoid significant increases in air pollution in Sydney so that associated health impacts, including health care costs, do not increase.
文摘An agent-based simulation model hierarchy emulating disease states and behaviors critical to progression of diabetes type 2 was designed and implemented in the DEVS framework. This model was built to approximately reproduce some essential findings that were previously reported for a rather complex model of diabetes progression. Our models are translations of basicelements of this previously reported system dynamics model of diabetes. The system dynamics model, which mimics diabetes progression over an aggregated US population, was disaggregated and reconstructed bottom-up at the individual (agent) level. Four levels of model complexity were defined in order to systematically evaluate which parameters are needed to mimic outputs of the system dynamics model. The four estimated models attempted to replicate stock counts representing disease states in the system dynamics model while estimating impacts of an elderliness factor, obesity factor and health-related behavioral parameters. Health-related behavior was modeled as a simple realization of the Theory of Planned Behavior, a joint function of individual attitude and diffusion of social norms that spread over each agent’s social network. Although the most complex agent-based simulation model contained 31 adjustable parameters, all models were considerably less complex than the system dynamics model which required numerous time series inputs to make its predictions. All three elaborations of the baseline model provided significantly improved fits to the output of the system dynamics model, although behavioral factors appeared to contribute more than the elderliness factor. The results illustrate a promising approach to translate complex system dynamics models into agent-based model alternatives that are both conceptually simpler and capable of capturing main effects of complex local agent-agent interactions.
基金funded through the VISTA Project that was carried out by the authors at the Département de Géologie et de Géographie,Universite catholique de Louvain,BelgiumVISTA was funded within the 5th Framework Programme of the European Commission.
文摘This paper presents an assessment of land use changes and their impacts on the ecosystem in the Montado, a traditional agricultural landscape of Portugal in response to global environmental change. The assessment uses an agent-based model (ABM) of the adaptive decisions of farmers to simulate the influence on future land use patterns of socio-economic attributes such as social relationships and farmer reliance on subsidies and biophysical constraints. The application and development of the ABM are supported empirically using three categories of input data: 1) farmer types based on a cluster analysis of socio-economic attributes;2) agricultural suitability based on regression analysis of historical land use maps and biophysical attributes;and 3) future trends in the economic and climatic environments based on the A1fi scenario of the Intergovernmental Panel on Climate Change. Model sensitivity and uncertainty analyses are carried out prior to the scenario analysis in order to verify the absence of systematic errors in the model structure. The results of the scenario analysis show that the area of Montado declines significantly by 2050, but it remains the dominant land use in the case study area, indicating some resilience to change. An important policy challenge arising from this assessment is how to encourage next generation of innovative farmers to conserve this traditional landscape for social and ecological values.
文摘This paper collects and synthesizes the technical requirements, implementation, and validation methods for quasi-steady agent-based simulations of interconnectionscale models with particular attention to the integration of renewable generation and controllable loads. Approaches for modeling aggregated controllable loads are presented and placed in the same control and economic modeling framework as generation resources for interconnection planning studies. Model performance is examined with system parameters that are typical for an interconnection approximately the size of the Western Electricity Coordinating Council(WECC) and a control area about 1/100 the size of the system. These results are used to demonstrate and validate the methods presented.
文摘In combinatorics, a Stirling number of the second kind S (n,k)? is the number of ways to partition a set of n objects into k nonempty subsets. The empty subsets are also added in the models presented in the article in order to describe properly the absence of the corresponding type i of state in the system, i.e. when its “share” Pi =0?. Accordingly, a new equation for partitions P (N, m)? in a set of entities into both empty and nonempty subsets was derived. The indistinguishableness of particles (N identical atoms or molecules) makes only sense within a cluster (subset) with the size?0≤ni ≥N. The first-order phase transition is indeed the case of transitions, for example in the simplest interpretation, from completely liquid state?typeL = {n1 =N, n2 = 0} to the completely crystalline state??typeC= {n1 =0, n2 = N }. These partitions are well distinguished from the physical point of view, so they are ‘typed’ differently in the model. Finally, the present developments in the physics of complex systems, in particular the structural relaxation of super-cooled liquids and glasses, are discussed by using such stochastic cluster-based models.
文摘In the United States, emission regulations are enacted at a state level;individual states are allowed to define what methods they will use to mitigate their carbon emissions. The consequence of this is especially interesting in the state of Texas where new legislation has created a “deregulated” electricity market in which end-users are capable of choosing their electricity provider and subsequently the type of electricity they wish to consume (generated by fossil fuels or renewable sources). In this paper we analyze the effects of carbon tax on the development of renewable generation capacity at the utility level while taking into account expected adoption of rooftop PV systems by individual consumers using agent based modeling techniques. Monte Carlo simulations show carbon abatement trends and proffer updated renewable portfolio standards at various levels of likelihood.
文摘Computer programs have been categorized as a useful tool to evaluate the complexity of systems. In fact, agent-based modeling (ABM) is considered a new method to model complex systems characterized by the role of independent and interrelating agents. Simulations contribute in estimating and comprehending emerging behaviors that require the development of new regulations for local agents that would make improvements to the system. This paper offers an example of a methodology and a process utilized to develop a simulation model named Befergyonet, an ABM used to conduct computer simulations within a spatio-intertemporal environment. The methodology discussed in this paper is intended solely to stimulate the use of innovative computer programs to simulate complex systems as an approach to represent real world events and may be a methodological guide for readers interested in developing their own ABM.