期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Aggregate-associated changes in nutrient properties,microbial community and functions in a greenhouse vegetable field based on an eight-year fertilization experiment of China 被引量:9
1
作者 LUAN Hao-an GAO Wei +6 位作者 TANG Ji-wei LI Ruo-nan LI Ming-yue ZHANG Huai-zhi CHEN Xin-ping Dainius MASILIUNAS HUANG Shao-wen 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2020年第10期2530-2548,共19页
Soil aggregation,microbial community,and functions(i.e.,extracellular enzyme activities;EEAs)are critical factors affecting soil C dynamics and nutrient cycling.We assessed soil aggregate distribution,stability,nutrie... Soil aggregation,microbial community,and functions(i.e.,extracellular enzyme activities;EEAs)are critical factors affecting soil C dynamics and nutrient cycling.We assessed soil aggregate distribution,stability,nutrients,and microbial characteristics within>2,0.25-2,0.053-0.25,and<0.053 mm aggregates,based on an eight-year field experiment in a greenhouse vegetable field in China.The field experiment includes four treatments:100%N fertilizer(CF),50%substitution of N frtilizer with manure(M),straw(S),and manure plus straw(MS).The amounts of nutrient(N,P20,and K20)input were equal in each treatment.Results showed higher values of mean weight diameter in organic amended soils(M,MS,and S,2.43-2.97)vs.CF-amended soils(1.99).Relative to CF treatment,organic amendments had positive effects on nutrient(i.e.,available N,P,and soil organic C(SOC))conditions,microbial(e.g,bacterial and fungal)growth,and EEAs in the>0.053 mm aggregates,but not in the<0.053 mm aggregates.The 0.25-0.053 mm aggregates exhibited better nutrient conditions and hydrolytic activity,while the<0.053 mm aggregates had poor nutrient conditions and higher oxidative activity among aggregates,per SOC,available N,available P,and a series of enzyme activities.These results indicated that the 0.25-0.053 mm(<0.053 mm)aggregates provide suitable microhabitats for hydrolytic(oxidative)activity.Interestingly,we found that hydrolytic and oxidative activities were mainly impacted by fertilization(58.5%,P<0.01)and aggregate fractions(50.5%,P<0.01),respectively.The hydrolytic and oxidative activities were significantly(P<0.01)associated with nutrients(SOC and available N)and pH,electrical conductivity,respectively.Furthermore,SOC,available N,and available P closely(P<0.05)afected microbial communities within>0.25,0.25-0.053,and<0.053 mm aggregates,respectively.These findings provide several insights into microbial characteristics within aggregates under dfferent frilization modes in the greenhouse vegetable production system in China. 展开更多
关键词 ferilization soil aggregate distribution microbial characteristics
下载PDF
Soil Aggregation and Its Relationship with Organic Carbon of Purple Soils in the Sichuan Basin,China 被引量:1
2
作者 WEI Chao-fu SHAO Jing-an +4 位作者 NI Jiu-pai GAO Ming XIE De-ti PAN Gen-xing Shuichi Hasegawa 《Agricultural Sciences in China》 CAS CSCD 2008年第8期987-998,共12页
The interaction of soil aggregate dynamics with soil organic carbon is complex with varied spatio-temporal processes in macro-and micro-aggregates. This paper is to determine the aggregation of soil aggregates in purp... The interaction of soil aggregate dynamics with soil organic carbon is complex with varied spatio-temporal processes in macro-and micro-aggregates. This paper is to determine the aggregation of soil aggregates in purple soils (Regosols in FAO Taxonomy or Entisols in USDA Taxonomy) for four types of land use, cropland [corn (Zea mays L.)], orchard (citrus), forestland (bamboo or cypress), and barren land (wild grass), and to explore their relationship with soil organic carbon in the Sichuan basin of southwestern China. Procedures and methods, including manual dry sieving procedure, Yoder's wet sieving procedure, pyrophosphates solution method, and Kachisky method, are used to acquire dry, wet, and chemically stable aggregates, and microaggregates. Light and heavy fractions of soil organic carbon were separated using 2.0 g·mL^-1 HgI2-KI mixed solution. The loosely, stably, and tightly combined organic carbon in heavy fraction were separated by extraction with 0.1 M NaOH and 0.1 M NaOH-0.1M Na4P2O7 mixed solution (pH 13). The results show that the contents of dry and wet macroaggregates 〉0.25 mm in diameter were 974.1 and 900.0 g·kg^-1 highest in red brown purple soils under forestland, while 889.6 and 350.6 g·kg^-1 lowest in dark purple soil and lowest in grey brown purple soils under cropland, respectively. The chemical stability of macroaggregates was lowest in grey brown purple soil with 8.47% under cropland, and highest in red brown purple soil with 69.34% under barren land. The content of microaggregates in dark purple soils was 587g·kg^-1 higher than brown purple soils, while 655g·kg^-1 in red brown purple soils was similar to grey brown purple soils (651g·kg^-1). Cropland conditions, only 38.4% of organic carbon was of the combined form, and 61.6% of that existed in light fraction. Forestland conditions, 90.7% of organic carbon in red brown purple soil was complexed with minerals as a form of humic substances. The contents and stability of wet aggregates 〉 0.25 mm, contents and stability of chemically stable aggregates 〉0.25 mm, contents of microaggregates 〉 0.01 mm, contents of aggregated primary particle (d〈0.01 mm) and degree of primary particles (d 〈0.01 mm) aggregation were closely related to the concentrations of total soil organic carbon, and loosely and tightly combined organic carbon in heavy fraction. Soil microaggregation could be associated with organic carbon concentration and its combined forms in heavy fraction. There was a direct relationship between microaggregation and macroaggregation of soil primary particles, because the contents of wet aggregates 〉 0.25 mm and its water stability of aggregates were highly correlated with the contents of aggregated primary particle (d 〈 0.01 mm) and the degree of primary particles (d 〈 0.01 mm) aggregation. 展开更多
关键词 aggregation of soil primary particle soil structure soil organic carbon aggregate size distribution complexingof organo-mineral purple soil
下载PDF
On the Distributions of Two Classes of Multiple Dependent Aggregate Claims
3
作者 Rong-ming Wang Kam C. Yuen Li-xing Zhu 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2008年第4期655-668,共14页
In this paper we examine two classes of correlated aggregate claims distributions, with univariate claim counts and multivariate claim sizes. Firstly, we extend the results of Hesselager [ASTIN Bulletin, 24: 19-32(1... In this paper we examine two classes of correlated aggregate claims distributions, with univariate claim counts and multivariate claim sizes. Firstly, we extend the results of Hesselager [ASTIN Bulletin, 24: 19-32(1994)] and Wang & Sobrero's [ASTIN Bulletin, 24:161-166 (1994)] concerning recursions for compound distributions to a multivariate situation where each claim event generates a random vector. Then we give a multivariate continuous version of recursive algorithm for calculating a family of compound distribution. Especially, to some extent, we obtain a continuous version of the corresponding results in Sundt [ASTIN Bulletin, 29:29-45 (1999)] and Ambagaspitiya [Insurance: Mathematics and Economics, 24:301-308 (1999)]. Finally, we give an example and show how to use the algorithm for aggregate claim distribution of first class to compute recursively the compound distribution. 展开更多
关键词 Compound distribution recursive algorithm collective risk model aggregate claim distribution absolutely continuous
原文传递
Aggregate sizes regulate the microbial community patterns in sandy soil profile
4
作者 Yifei Sun Meiling Sun +3 位作者 Guowei Chen Xin Chen Baoguo Li Gang Wang 《Soil Ecology Letters》 CAS 2021年第4期313-327,共15页
Soil microorganisms play a key role in the function of soil ecosystem,yet our knowledge about how microbial communities respond to the typically sandy soil environmental properties along the soil profile is still insu... Soil microorganisms play a key role in the function of soil ecosystem,yet our knowledge about how microbial communities respond to the typically sandy soil environmental properties along the soil profile is still insufficient.We investigated the soil microbial community patterns from top(0–20 cm)to clay-layer(>80 cm)of the typical sandy soils in three regions in China with different levels of precipitation,including Lishu County in Jilin Province(LS),Langfang City in Hebei Province(LF)and Zhengzhou City in Henan Province(ZZ).Our findings showed that small-size aggregates(<0.5 mm)rather than large ones(³0.5 mm)dominated the soil profile.The relative abundances of Actinobacteria,Crenarchaeota and Firmicutes were highly related to aggregate proportions of the deep clay-layer soil.The network analysis revealed the distinct community patterns among modules,evidencing niche differentiation along the soil profile.The keystone species OTU_11292 was observed having migrated clearly into the other module of the clay-layer soil.Different roles of the OTU_30(belonging to Gemmatimonadetes)in soil processes might partly explain the different microbial distribution between top-and clay-layer soils.These findings provided new insights into the candidate mechanisms of microbial diversity maintenance and community patterning of sandy soils,which were necessary for better understanding of ecological rules guiding long-term agricultural practice. 展开更多
关键词 aggregate distributions 16S rRNA Microbial community Sandy soil Network analysis Soil profile
原文传递
Effects of land use patterns on soil aggregate stability in Sichuan Basin,China 被引量:9
5
作者 Zhen Zhang Chaofu Wei +2 位作者 Deti Xie Ming Gao Xibai Zeng 《Particuology》 SCIE EI CAS CSCD 2008年第3期157-166,共10页
Soil aggregate stability as a key indicator of soil structure, is a product of interactions between soil environment, management practices, and land use patterns. The objective of this study was to analyze the impact ... Soil aggregate stability as a key indicator of soil structure, is a product of interactions between soil environment, management practices, and land use patterns. The objective of this study was to analyze the impact of various land use patterns on soil aggregate stability in Sichuan Basin of southwestern China. The dry- and water-stable aggregate size distributions were determined by manual dry sieving procedure and Yoder's wet sieving procedure, respectively, while microaggregates and its mechanical and chemical stabilities by Kachisky's method, oscillator method, and citrate-dithionate (C-D) reagent method, separately. The results indicated that fractal dimension and surface fractal dimension were useful indicators to reflect soil aggregate distribution. Land use patterns have an obvious influence on soil aggregate stability. In the study area, water stability, mechanical stability, and chemical stability followed the sequence, Barren land 〉 forestland 〉 orchard 〉 cropland, and the original stability and collapse velocity were sensitive to soil properties and soil structure. The difference of aggregate stability under different land use patterns is mainly due to the intensity of human disturbance and cultivation. Improper land use patterns will lead to breakdown of unstable aggregates, producing finer and more-easily transportable particles and microaggregates. In the future, inappropriate cultivation and land use patterns should be changed to protect soil structure, to improve soil aggregate stability and soil fertility in Sichuan Basin. 展开更多
关键词 aggregate size distribution Soil aggregate stability Fractal dimension Land use pattern Purple soil Sichuan Basin China
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部