期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Supervised Feature Learning for Offline Writer Identification Using VLAD and Double Power Normalization
1
作者 Dawei Liang Meng Wu Yan Hu 《Computers, Materials & Continua》 SCIE EI 2023年第7期279-293,共15页
As an indispensable part of identity authentication,offline writer identification plays a notable role in biology,forensics,and historical document analysis.However,identifying handwriting efficiently,stably,and quick... As an indispensable part of identity authentication,offline writer identification plays a notable role in biology,forensics,and historical document analysis.However,identifying handwriting efficiently,stably,and quickly is still challenging due to the method of extracting and processing handwriting features.In this paper,we propose an efficient system to identify writers through handwritten images,which integrates local and global features from similar handwritten images.The local features are modeled by effective aggregate processing,and global features are extracted through transfer learning.Specifically,the proposed system employs a pre-trained Residual Network to mine the relationship between large image sets and specific handwritten images,while the vector of locally aggregated descriptors with double power normalization is employed in aggregating local and global features.Moreover,handwritten image segmentation,preprocessing,enhancement,optimization of neural network architecture,and normalization for local and global features are exploited,significantly improving system performance.The proposed system is evaluated on Computer Vision Lab(CVL)datasets and the International Conference on Document Analysis and Recognition(ICDAR)2013 datasets.The results show that it represents good generalizability and achieves state-of-the-art performance.Furthermore,the system performs better when training complete handwriting patches with the normalization method.The experimental result indicates that it’s significant to segment handwriting reasonably while dealing with handwriting overlap,which reduces visual burstiness. 展开更多
关键词 Writer identification power normalization vector of locally aggregated descriptors feature extraction
下载PDF
A Novel Feature Aggregation Approach for Image Retrieval Using Local and Global Features
2
作者 Yuhua Li Zhiqiang He +4 位作者 Junxia Ma Zhifeng Zhang Wangwei Zhang Prasenjit Chatterjee Dragan Pamucar 《Computer Modeling in Engineering & Sciences》 SCIE EI 2022年第4期239-262,共24页
The current deep convolution features based on retrievalmethods cannot fully use the characteristics of the salient image regions.Also,they cannot effectively suppress the background noises,so it is a challenging task... The current deep convolution features based on retrievalmethods cannot fully use the characteristics of the salient image regions.Also,they cannot effectively suppress the background noises,so it is a challenging task to retrieve objects in cluttered scenarios.To solve the problem,we propose a new image retrieval method that employs a novel feature aggregation approach with an attention mechanism and utilizes a combination of local and global features.The method first extracts global and local features of the input image and then selects keypoints from local features by using the attention mechanism.After that,the feature aggregation mechanism aggregates the keypoints to a compact vector representation according to the scores evaluated by the attention mechanism.The core of the aggregation mechanism is to allow features with high scores to participate in residual operations of all cluster centers.Finally,we get the improved image representation by fusing aggregated feature descriptor and global feature of the input image.To effectively evaluate the proposedmethod,we have carried out a series of experiments on large-scale image datasets and compared them with other state-of-the-art methods.Experiments show that this method greatly improves the precision of image retrieval and computational efficiency. 展开更多
关键词 Attention mechanism image retrieval descriptor aggregation convolutional neural network
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部