Both soil organic carbon (SOC) and iron (Fe) oxide content, among other factors, drive the formation and stability of soil aggregates.However, the mechanism of these drivers in greenhouse soil fertilized with organic ...Both soil organic carbon (SOC) and iron (Fe) oxide content, among other factors, drive the formation and stability of soil aggregates.However, the mechanism of these drivers in greenhouse soil fertilized with organic fertilizer is not well understood.In a 3-year field experiment, we aimed to investigate the factors which drive the stability of soil aggregates in greenhouse soil.To explore the impact of organic fertilizer on soil aggregates, we established four treatments:no fertilization (CK);inorganic fertilizer (CF);organic fertilizer (OF);and combined application of inorganic and organic fertilizers(COF).The application of organic fertilizer significantly enhanced the stability of aggregates, that is it enhanced the mean weight diameter, geometric mean diameter and aggregate content (%) of>0.25 mm aggregate fractions.OF and COF treatments increased the concentration of SOC, especially the aliphatic-C, aromatic-C and polysaccharide-C components of SOC, particularly in>0.25 mm aggregates.Organic fertilizer application significantly increased the content of free Fe(Fed), reactive Fe (Feo), and non-crystalline Fe in both bulk soil and aggregates.Furthermore, non-crystalline Fe showed a positive correlation with SOC content in both bulk soil and aggregates.Both non-crystalline Fe and SOC were significantly positively correlated with>2 mm mean weight diameter.Overall, we believe that the increase of SOC, aromatic-C, and non-crystal ine Fe concentrations in soil after the application of organic fertilizer is the reason for improving soil aggregate stability.展开更多
Developing realistic soil carbon (C) sequestration strategies for China's sustainable agriculture relies on accurate estimates of the amount, retention and turnover rates of C stored in paddy soils. Available C est...Developing realistic soil carbon (C) sequestration strategies for China's sustainable agriculture relies on accurate estimates of the amount, retention and turnover rates of C stored in paddy soils. Available C estimates to date are predominantly for the tilled and flood-irrigated surface topsoil (ca. 30 cm). Such estimates cannot be used to extrapolate to soil depths of 100 cm since soil organic carbon (SOC) generally shows a sharp decrease with depth. In this research, composite soil samples were collected at several depths to 100 cm from three representative paddy soils in the Taihu Lake region, China. Soil organic carbon distribution in the profiles and in aggregate-size fractions was determined. Results showed that while SOC decreased exponentially with depth to 100 cm, a substantial proportion of the total SOC (30%-40%) is stored below the 30 cm depth. In the carbon-enriched paddy topsoils, SOC was found to accumulate preferentially in the 2-0.25 and 0.25-0.02 mm aggregate size fractions. δ^13C analysis of the coarse micro-aggregate fraction showed that the high degree of C stratification in the paddy topsoil was in agreement with the occurrence of lighter δ^1313C in the upper 30 cm depth. These results suggest that SOC stratification within profiles varies with different pedogenetical types of paddy soils with regards to clay and iron oxyhydrates distributions. Sand-sized fractions of aggregates in paddy soil systems may play a very important role in carbon sequestration and turnover, dissimilar to other studied agricultural systems.展开更多
The interaction of soil aggregate dynamics with soil organic carbon is complex with varied spatio-temporal processes in macro-and micro-aggregates. This paper is to determine the aggregation of soil aggregates in purp...The interaction of soil aggregate dynamics with soil organic carbon is complex with varied spatio-temporal processes in macro-and micro-aggregates. This paper is to determine the aggregation of soil aggregates in purple soils (Regosols in FAO Taxonomy or Entisols in USDA Taxonomy) for four types of land use, cropland [corn (Zea mays L.)], orchard (citrus), forestland (bamboo or cypress), and barren land (wild grass), and to explore their relationship with soil organic carbon in the Sichuan basin of southwestern China. Procedures and methods, including manual dry sieving procedure, Yoder's wet sieving procedure, pyrophosphates solution method, and Kachisky method, are used to acquire dry, wet, and chemically stable aggregates, and microaggregates. Light and heavy fractions of soil organic carbon were separated using 2.0 g·mL^-1 HgI2-KI mixed solution. The loosely, stably, and tightly combined organic carbon in heavy fraction were separated by extraction with 0.1 M NaOH and 0.1 M NaOH-0.1M Na4P2O7 mixed solution (pH 13). The results show that the contents of dry and wet macroaggregates 〉0.25 mm in diameter were 974.1 and 900.0 g·kg^-1 highest in red brown purple soils under forestland, while 889.6 and 350.6 g·kg^-1 lowest in dark purple soil and lowest in grey brown purple soils under cropland, respectively. The chemical stability of macroaggregates was lowest in grey brown purple soil with 8.47% under cropland, and highest in red brown purple soil with 69.34% under barren land. The content of microaggregates in dark purple soils was 587g·kg^-1 higher than brown purple soils, while 655g·kg^-1 in red brown purple soils was similar to grey brown purple soils (651g·kg^-1). Cropland conditions, only 38.4% of organic carbon was of the combined form, and 61.6% of that existed in light fraction. Forestland conditions, 90.7% of organic carbon in red brown purple soil was complexed with minerals as a form of humic substances. The contents and stability of wet aggregates 〉 0.25 mm, contents and stability of chemically stable aggregates 〉0.25 mm, contents of microaggregates 〉 0.01 mm, contents of aggregated primary particle (d〈0.01 mm) and degree of primary particles (d 〈0.01 mm) aggregation were closely related to the concentrations of total soil organic carbon, and loosely and tightly combined organic carbon in heavy fraction. Soil microaggregation could be associated with organic carbon concentration and its combined forms in heavy fraction. There was a direct relationship between microaggregation and macroaggregation of soil primary particles, because the contents of wet aggregates 〉 0.25 mm and its water stability of aggregates were highly correlated with the contents of aggregated primary particle (d 〈 0.01 mm) and the degree of primary particles (d 〈 0.01 mm) aggregation.展开更多
Straw return is a promising strategy for managing soil organic carbon(SOC)and improving yield stability.However,the optimal straw return strategy for sustainable crop production in the wheat(Triticum aestivum L.)-cott...Straw return is a promising strategy for managing soil organic carbon(SOC)and improving yield stability.However,the optimal straw return strategy for sustainable crop production in the wheat(Triticum aestivum L.)-cotton(Gossypium hirsutum L.)cropping system remains uncertain.The objective of this study was to quantify the long-term(10 years)impact of carbon(C)input on SOC sequestration,soil aggregation and crop yields in a wheat-cotton cropping system in the Yangtze River Valley,China.Five treatments were arranged with a single-factor randomized design as follows:no straw return(Control),return of wheat straw only(Wt),return of cotton straw only(Ct),return of 50%wheat and 50%cotton straw(Wh-Ch)and return of 100%wheat and 100%cotton straw(Wt-Ct).In comparison to the Control,the SOC content increased by 8.4 to 20.2%under straw return.A significant linear positive correlation between SOC sequestration and C input(1.42-7.19 Mg ha^(−1)yr^(−1))(P<0.05)was detected.The percentages of aggregates of sizes>2 and 1-2 mm at the 0-20 cm soil depth were also significantly elevated under straw return,with the greatest increase of the aggregate stability in the Wt-Ct treatment(28.1%).The average wheat yields increased by 12.4-36.0%and cotton yields increased by 29.4-73.7%,and significantly linear positive correlations were also detected between C input and the yields of wheat and cotton.The average sustainable yield index(SYI)reached a maximum value of 0.69 when the C input was 7.08 Mg ha^(−1)yr^(−1),which was close to the maximum value(SYI of 0.69,C input of 7.19 Mg ha^(−1)yr^(-1))in the Wt-Ct treatment.Overall,the return of both wheat and cotton straw was the best strategy for improving SOC sequestration,soil aggregation,yields and their sustainability in the wheat-cotton rotation system.展开更多
Tillage practices during the fallow period benefit water storage and yield in dryland wheat crops.However,there is currently no clarity on the responses of soil organic carbon(SOC),total nitrogen(TN),and available nut...Tillage practices during the fallow period benefit water storage and yield in dryland wheat crops.However,there is currently no clarity on the responses of soil organic carbon(SOC),total nitrogen(TN),and available nutrients to tillage practices within the growing season.This study evaluated the effects of three tillage practices(NT,no tillage;SS,subsoil tillage;DT,deep tillage)over five years on soil physicochemical properties.Soil samples at harvest stage from the fifth year were analyzed to determine the soil aggregate and aggregate-associated C and N fractions.The results indicated that SS and DT improved grain yield,straw biomass and straw carbon return of wheat compared with NT.In contrast to DT and NT,SS favored SOC and TN concentrations and stocks by increasing the soil organic carbon sequestration rate(SOCSR)and soil nitrogen sequestration rate(TNSR)in the 0-40 cm layer.Higher SOC levels under SS and NT were associated with greater aggregate-associated C fractions,while TN was positively associated with soluble organic nitrogen(SON).Compared with DT,the NT and SS treatments improved soil available nutrients in the 0-20 cm layer.These findings suggest that SS is an excellent practice for increasing soil carbon,nitrogen and nutrient availability in dryland wheat fields in North China.展开更多
Soil aggregate is the basic structural unit of soil,which is the foundation for supporting ecosystem functions,while its composition and stability is significantly affected by the external environment.This study was c...Soil aggregate is the basic structural unit of soil,which is the foundation for supporting ecosystem functions,while its composition and stability is significantly affected by the external environment.This study was conducted to explore the effect of external environment(wetting-drying cycles and acidic conditions)on the soil aggregate distribution and stability and identify the key soil physicochemical factors that affect the soil aggregate stability.The yellow‒brown soil from the Three Gorges Reservoir area(TGRA)was used,and 8 wetting-drying conditions(0,1,2,3,4,5,10 and 15 cycles)were simulated under 4 acidic conditions(pH=3,4,5 and 7).The particle size distribution and soil aggregate stability were determined by wet sieving method,the contribution of environmental factors(acid condition,wetting-drying cycle and their combined action)to the soil aggregate stability was clarified and the key soil physicochemical factors that affect the soil aggregate stability under wetting-drying cycles and acidic conditions were determined by using the Pearson’s correlation analysis,Partial least squares path modeling(PLS‒PM)and multiple linear regression analysis.The results indicate that wetting-drying cycles and acidic conditions have significant effects on the stability of soil aggregates,the soil aggregate stability gradually decreases with increasing number of wetting-drying cycles and it obviously decreases with the increase of acidity.Moreover,the combination of wetting-drying cycles and acidic conditions aggravate the reduction in the soil aggregate stability.The wetting-drying cycles,acidic conditions and their combined effect imposes significant impact on the soil aggregate stability,and the wetting-drying cycles exert the greatest influence.The soil aggregate stability is significantly correlated with the pH,Ca^(2+),Mg^(2+),maximum disintegration index(MDI)and soil bulk density(SBD).The PLS‒PM and multiple linear regression analysis further reveal that the soil aggregate stability is primarily influenced by SBD,Ca^(2+),and MDI.These results offer a scientific basis for understanding the soil aggregate breakdown mechanism and are helpful for clarifying the coupled effect of wetting-drying cycles and acid rain on terrestrial ecosystems in the TGRA.展开更多
We studied changes in the concentrations of aggregate-cementing agents after different reclamation times and with different fertilization regimes,as well as the formation mechanism of aggregates in reclaimed soil,to p...We studied changes in the concentrations of aggregate-cementing agents after different reclamation times and with different fertilization regimes,as well as the formation mechanism of aggregates in reclaimed soil,to provide a theoretical basis for rapid reclamation of soil fertility in the subsidence area of coal mines in Shanxi Province,China.In this study,soil samples of 0–20 cm depth were collected from four fertilization treatments of a longterm experiment started in 2008:no fertilizer (CK),inorganic fertilizer (NPK),chicken manure compost (M),and50%inorganic fertilizer plus 50%chicken manure compost (MNPK).The concentrations of cementing agents and changes in soil aggregate size distribution and stability were analysed.The results showed that the formation of>2 mm aggregates,the aggregate mean weight diameter (MWD),and the proportion of>0.25 mm water-stable aggregates (WR_(0.25)) increased significantly after 6 and 11 years of reclamation.The concentration of organic cementing agents tended to increase with reclamation time,whereas free iron oxide (Fed) and free aluminium oxide(Ald) concentrations initially increased but then decreased.In general,the MNPK treatment signi?cantly increased the concentrations of organic cementing agents and CaCO_(3),and CaCO_(3) increased by 60.4%at 11 years after reclamation.Additionally,CaCO_(3) had the greatest effect on the stability of aggregates,promoting the formation of>0.25 mm aggregates and accounting for 54.4%of the variance in the proportion and stability of the aggregates.It was concluded that long-term reclamation is bene?cial for improving soil structure.The MNPK treatment was the most effective measure for increasing maize grain yield and concentration of organic cementing agents and CaCO_(3).展开更多
Nitrogen(N)is a key factor in the positive response of cereal crops that follow leguminous crops when compared to gramineous crops in rotations,with the nonrecyclable rhizosphere-derived N playing an important role.Ho...Nitrogen(N)is a key factor in the positive response of cereal crops that follow leguminous crops when compared to gramineous crops in rotations,with the nonrecyclable rhizosphere-derived N playing an important role.However,quantitative assessments of differences in the N derived from rhizodeposition(NdfR)between legumes and gramineous crops are lacking,and comparative studies on their contributions to the subsequent cereals are scarce.In this study,we conducted a meta-analysis of NdfR from leguminous and gramineous crops based on 34 observations published worldwide.In addition,pot experiments were conducted to study the differences in the NdfR amounts,distributions and subsequent effects of two major wheat(Triticum aestivum L.)-preceding crops,corn(Zea mays L.)and soybean(Glycine max L.),by the cotton wick-labelling method in the main wheat-producing areas of China.The meta-analysis results showed that the NdfR of legumes was significantly greater by 138.93%compared to gramineous crops.In our pot experiment,the NdfR values from corn and soybean were 502.32 and 944.12 mg/pot,respectively,and soybean was also significantly higher than corn,accounting for 76.91 and 84.15%of the total belowground nitrogen of the plants,respectively.Moreover,in different soil particle sizes,NdfR was mainly enriched in the large macro-aggregates(>2 mm),followed by the small macro-aggregates(2–0.25 mm).The amount and proportion of NdfR in the macro-aggregates(>0.25 mm)of soybean were 3.48 and 1.66 times higher than those of corn,respectively,indicating the high utilization potential of soybean NdfR.Regarding the N accumulation of subsequent wheat,the contribution of soybean NdfR to wheat was approximately 3 times that of corn,accounting for 8.37 and 4.04%of the total N uptake of wheat,respectively.In conclusion,soybean NdfR is superior to corn in terms of the quantity and distribution ratio of soil macro-aggregates.In future field production,legume NdfR should be included in the nitrogen pool that can be absorbed and utilized by subsequent crops,and the role and potential of leguminous plants as nitrogen source providers in crop rotation systems should be fully utilized.展开更多
Structural properties of forest soils have important hydro-ecological function and can influence the soil water-physical characters and soil erosion. The experimental soil samples were obtained in surface horizon (0-1...Structural properties of forest soils have important hydro-ecological function and can influence the soil water-physical characters and soil erosion. The experimental soil samples were obtained in surface horizon (0-10 cm) from different subalpine forest types on east slope of Gongga Mountain in the upriver area of Yangtze River China in May 2002. The soil bulk density, porosity, stable infiltration rate, aggregate distribution and particle-size distribution were analyzed by the routine methods in room, and the features and effects on eco-environment of soil aggregation were studied. The results showed that the structure of soil under mixed mature forest is in the best condition and can clearly enhance the eco-environmental function of soil, and the soil structure under the clear-cutting forest is the worst, the others are ranked between them. The study results can offer a basic guidance for the eco-environmental construction in the upper reaches of Yangtze River.展开更多
[Objective] This study was conducted to investigate the effects of tradition-al fertilization and formula fertilization by soil testing on the chemical forms of nitro-gen in dark brown soil and its distribution in dif...[Objective] This study was conducted to investigate the effects of tradition-al fertilization and formula fertilization by soil testing on the chemical forms of nitro-gen in dark brown soil and its distribution in different aggregates. [Method] A physi-co-chemistry method was adopted in a comparative study on the chemical forms of nitrogen and their distribution in different-sized aggregates of dark brown soil under traditional fertilization and formula fertilization by soil testing respectively. [Result] Compared with traditional fertilization in spring and autumn, the formula fertilization by soil testing averagely decreased, the total nitrogen in soil by 23.2% in spring and by 20% in autumn in the soil layer of 0-20 cm, by 48.8% in the layer of 20-40 cm. Ammonium nitrogen was so sensitive to the methods of fertilization that the content of ammonium nitrogen was reduced much more under formula fertitization by soil testing in autumn than under traditional fertilization. Nitrogen in soil under traditional fertilization pattern was mainly distributed in the aggregates of 0-0.25 and 0.5-1 mm, while in formula fertilization by soil testing it was mainly distributed in the aggregates of 0.25-0.5 and 0-0.25 mm. [Conclusion] The study proved that for-mula fertilization by soil testing helped to reduce the risk of nitrogen pol ution and had huge effects on the chemical forms and distribution of nitrogen in different ag-gregates in dark brown soil.展开更多
Increasing evidence has shown that conservation tillage is an effective agricultural practice to increase carbon (C) sequestration in soils. In order to understand the mechanisms underlying the responses of soil org...Increasing evidence has shown that conservation tillage is an effective agricultural practice to increase carbon (C) sequestration in soils. In order to understand the mechanisms underlying the responses of soil organic carbon (SOC) to tillage regimes, physical fractionation techniques were employed to evaluate the effect of long-term no-tillage (NT) on soil aggregation and SOC fractions. Results showed that NT increased the concentration of total SOC by 18.1% compared with conventional tillage (CT) under a long-term maize (Zea mays L.) cropping system in Northeast China. The proportion of soil large macroaggregates (〉 2 000 μm) was higher in NT than that in CT, while small macroaggregates (250-2 000μm) showed an opposite trend. Therefore, the total proportion of macroaggregates (〉 2 000 and 250-2 000μm) was not affected by tillage management. However, C concentrations of macroaggregates on a whole soil basis were higher under NT relative to CT, indicating that both the amount of aggregation and aggregate turnover affected C stabilization. Carbon concentrations of intra-aggregate particulate organic matter associated with microaggregates (iPOM-m) and microaggregates occluded within macroaggregates (iPOM-mM) in NT were 1.6 and 1.8 times greater than those in CT, respectively. Carbon proportions of iPOM-n and iPOM-mM in the total SOC increased from 5.4% and 6.3% in CT to 7.2% and 9.7% in NT, respectively. Furthermore, the difference in the microaggregate protected C (i. e., iPOM-m and iPOM-mM) between NT and CT could explain 45.4% of the difference in the whole SOC. The above results indicate that NT stimulates C accumulation within microaggregates which then are further acted upon in the soil to form macroaggregates. The shift of SOC within microaggregates is beneficial for long-term C sequestration in soil. We also corroborate that the microaggregate protected C is useful as a pool for assessing the impact of tillage management on SOC storage.展开更多
Tillage greatly influences the aggregation and stability of soil aggregates. This study investigated the effects of conservation tillage on soil aggregate characteristics. During a four-year study period (2001-2005)...Tillage greatly influences the aggregation and stability of soil aggregates. This study investigated the effects of conservation tillage on soil aggregate characteristics. During a four-year study period (2001-2005), soils were sampled from no-tillage (NT), rotary tillage (RT), and conventional tillage (moldboard tillage, CT) plots at the Luancheng Agriculture and Ecology Experimental Station in Hebei Province, China, and the amount, size distribution, and fractal dimension of the aggregates were examined by dry and wet sieving methods. The results indicated that NT significantly increased the topsoil (0-5 cm) bulk density (BD), while RT maintained a lower BD as CT. Dry sieving results showed that NT had higher macro-aggregate content (R0.25), and a larger mean weight diameter (MWD) and geometric mean diameter (GMD) than other treatments in the 0-10 cm layer, while RT showed no difference from CT. In wet sieving, results showed that most of the aggregates were unstable, and the MWD and GMD of water-table aggregates showed the trend of NT 〉 RT 〉 CT. At 0-5 cm layer, the fractal dimension (D) of water-stable aggregates under NT was lower than it was under RT and CT. At 5-10 cm, RT yielded the highest D, and showed stability. After four years, NT increased the aggregation and the stability of soil aggregates; while due to intense disturbance, the aggregation and stability of the upper layer (0-10 cm) under RT and CT decreased.展开更多
Wet stability, penetration resistance (PR), and tensile strength (TS) of paddy soils under a fertilization experiment for 22 years were determined to elucidate the function of soil organic matter in paddy soil sta...Wet stability, penetration resistance (PR), and tensile strength (TS) of paddy soils under a fertilization experiment for 22 years were determined to elucidate the function of soil organic matter in paddy soil stabilization. The treatments included no fertilization (CK), normal chemical fertilization (NPK), double the NPK application rates (2NPK), and NPK mixed with organic manure (NPK+OM). Compared with CK, Fertilization increased soil organic carbon (SOC) and soil porosity. The results of soil aggregate fragmentation degree (SAFD) showed that fast wetting by water was the key fragmentation mechanism. Among the treatments, the NPK+OM treatment had the largest size of water-stable aggregates and greatest normal mean weight diameter (NMWD) (P ≤ 0.05), but the lowest PR and TS in both cultivated horizon (Ap) and plow pan. The CK and 2NPK treatments were measured with PR 〉 2.0 MPa and friability index 〈 0.20, respectively, in the Ap horizon, suggesting that the soils was mechanically unfavourable to root growth and tillage. In the plow pan, the fertilization treatments had greater TS and PR than in CK. TS and PR of the tested soil aggregates were negatively correlated to SOC content and soil porosity. This study suggested that chemical fertilization could cause deterioration of mechanical properties while application of organic manure could improve soil stability and mechanical properties.展开更多
Organic amendment is considered as an effective way to increase soil organic carbon (SOC) stock in croplands. To better understand its potential for SOC sequestration, whether SOC saturation could be observed in an ...Organic amendment is considered as an effective way to increase soil organic carbon (SOC) stock in croplands. To better understand its potential for SOC sequestration, whether SOC saturation could be observed in an intensive agricultural ecosystem receiving long-term composted manure were examined. Different SOC pools were isolated by physical fractionation techniques ofa Cambisol soil under a long-term manure experiment with wheat-maize cropping in North China Plain. A field experiment was initiated in 1993, with 6 treatments including control (i.e., without fertilization), chemical fertilizer only, low rate of traditional composted manure (7.5 t ha-h), high rate of traditional composted manure (15 t ha-~), low rate ofbio-composted manure (7.5 t ha-h) and high rate of bio-composted manure (15 t ha-h). The results showed that consecutive (for up to 20 years) composted manure amendments significantly improved soil macro-aggregation, aggregate associated SOC concentration, and soil structure stability. In detail, SOC concentration in the sand-sized fraction (〉53 ~tm) continued to increase with manure application rate, while the silt (2-53 I.tm) and clay (〈2 ~tm) particles showed no further increase with greater C inputs, exhibiting the C saturation. Further physical separation of small macro-aggregates (250-2 000 tam) into subpools showed that the non-protected coarse particulate organic matter (cPOM, 〉250 pro) was the fraction in which SOC continued to increase with increasing manure application rate. In contrast, the chemical and physical protected C pools (i.e., micro-aggregates and silt-clay occluded in the small macro- aggregates) exhibited no additional C sequestration when the manure application rate was increased. It can be concluded that repeated manure amendments can increase soil macro-aggregation and lead to the increase in relatively stable C pools, showing hierarchical saturation behavior in the intensive cropping system of North China Plain.展开更多
The composition and stability of soil aggregate are closely related to soil quality, soil erosion, and agricultural sustainability. In this study, 49 soil samples at the 0-10 cm surface layer were collected from four ...The composition and stability of soil aggregate are closely related to soil quality, soil erosion, and agricultural sustainability. In this study, 49 soil samples at the 0-10 cm surface layer were collected from four soil types (i.e., Ari-Sandic Primosols, Calci-Orthic Aridosols, Siltigi-Otrthic Anthrosols, and Ustic Cambosols) in the marginal farmland in the oasis of the middle Hexi Corridor region and was used to determine the characteristics of soil aggregates. The composition of dry- and wet- sieved aggregates and the physical and chemical properties (including soil particle distribution, soil organic carbon (SOC), calcium carbonate (CaCO3), and oxides of Fe^3+ and Al^3+) of the selected soils were analyzed. The results show that soil particle size distribution is dominated by fine sand fraction in most of soils except Ustic Cambosols. Soil organic carbon concentration is 5.88 ± 2.52 g kg^-1 on average, ranging from 4.75 g kg^-1 in Ari-Sandic Primosols to 10.51 g kg^-1 in Ustic Cambosols. The soils have high calcium carbonate (CaCO3) concentration, ranging from 84.7 to 164.8 g kg^-1, which is increased with soil fine particle and organic carbon content. The percentage of 〉0.25 mm dry aggregates ranges from 65.2% in Ari-Sandic Primosols to 94.6% in Ustic Cambosols, and large dry blocky aggregates (〉5 mm) is dominant in all soils. The mean weight diameter of dry aggregates (DMWD) ranges from 3.2 mm to 5.5 mm. The percentage of 〉0.25 mm water-stable aggregate is from 23.8% to 45.4%. The percentage of aggregate destruction (PAD) is from 52.4% to 66.8%, which shows a weak aggregate stability. Ari-Sandic Primosols has the highest PAD. The distribution and characteristics of soil aggregates are in favor of controlling soil wind erosion. However, the stability of aggregate of all soils is weak and soils are prone to disperse and harden after irrigation. The mass of macro-aggregates and DMWD are positively significantly correlated with the contents of soil clay and silt, soil organic carbon (SOC), CaCO3, and oxides of Fe^3+ and Al^3+. Soil fine silt and clay, SOC and CaCO3 are important agents of aggregation in this region, and the effect of SOC and CaCO3 on aggregate stability is more significant than that of soil silt and clay. Converting cropland to alfalfa forage land can increase SOC concentration, and in turn, enhance the formation of aggregates and stability. For the marginal farmlands in this fragile ecological area, converting cropland to alfalfa grassland or performing crop-grass rotation is an effective and basic strategy to improve soil structure and quality, to mitigate soil wind erosion, and to enhance oasis agricultural sustainability.展开更多
The distribution of binding agents(i.e.,soil organic carbon(SOC)and glomalin-related soil protein(GRSP))in soil aggregates was influenced by many factors,such as plant characteristics and soil properties.However,how t...The distribution of binding agents(i.e.,soil organic carbon(SOC)and glomalin-related soil protein(GRSP))in soil aggregates was influenced by many factors,such as plant characteristics and soil properties.However,how these factors affect binding agents and soil aggregate stability along a climatic gradient remained unclear.We selected the Robinia pseudoacacia L.forests from semi-arid to semi-humid of the Loess Plateau,China to analyze the plant biomass,soil physical-chemical properties,SOC and GRSP distribution in different sized soil aggregates.We found that from semi-arid to semi-humid forests:(1)the proportion of macro-aggregates(>0.250 mm)significantly increased(P<0.05),whereas those of micro-aggregates(0.250–0.053 mm)and fine materials(<0.053 mm)decreased and soil aggregate stability was increased;(2)the contents of SOC and GRSP in macro-aggregates and micro-aggregates significantly increased,and those in fine materials decreased;(3)the contribution of SOC to soil aggregate stability was greater than those of total GRSP and easily extractable GRSP;(4)soil properties had greater influence on binding agents than plant biomass;and(5)soil aggregate stability was enhanced by increasing the contents of SOC and GRSP in macro-aggregates and soil property was the important part during this process.Climate change from semi-arid to semi-humid forests is important factor for soil structure formation because of its positive effect on soil aggregates.展开更多
Fractal method is a new method to estimate soil structure. It has been shown to be a useful tool in studies related to physical properties of soil as well as erosion and other hydrological processes. Fractal dimension...Fractal method is a new method to estimate soil structure. It has been shown to be a useful tool in studies related to physical properties of soil as well as erosion and other hydrological processes. Fractal dimension was used to study the soil structure in soil at different stages of vegetative succession on the Ziwuling Mountains. The land use and vegetation types included cultivated land, abandoned land, grassland, two types of shrub land, and three types of forests. The grassland, shrub land, and forested areas represented a continuum in vegetative succession that had occurred naturally, as the land was abandoned in 1862. Disturbed and undisturbed soil samples were collected from ten vegetation types from depths of 0-10, 10-20, and 20-30 cm on the Ziwuling Mountains, at a site with an elevation of about 1 500 m. Particle size distribution was determined by the pipette method and aggregate size distribution was determined by wet sieving. The results were used to calculate the particle and aggregate fractal dimension. The results showed that particle and aggregate fractal dimensions varied between vegetation types. There was a positive correlation between the particle fractal dimension and the weight of particles with diameter 〈 0.001 mm, but no relationship between particle fractal dimension and the other particle size classes. Particle fractal dimension was lower in vegetated soils compared to cropland and there was no consistent relationship between fractal dimension and vegetation type. Aggregate fractal dimension was positively correlated with the weight of 〉 0.25 mm aggregates. Aggregate fractal dimension was lower in vegetated soils compared with cropland. In contrast to particle fractal dimension, aggregate fractal dimension described changes in soil structure associated with vegetative succession. The results of this study indicate that aggregate fractal dimension is more effective in describing soil structure and function compared with particle fractal dimension.展开更多
The lack of clarity of how natural vegetation restoration influences soil organic carbon(SOC) content and SOC components in soil aggregate fractions limits the understanding of SOC sequestration and turnover in forest...The lack of clarity of how natural vegetation restoration influences soil organic carbon(SOC) content and SOC components in soil aggregate fractions limits the understanding of SOC sequestration and turnover in forest ecosystems.The aim of this study was to explore how natural vegetation restoration affects the SOC content and ratio of SOC components in soil macroaggregates(>250 μm), microaggregates(53–250 μm), and silt and clay(<53 μm) fractions in 30-, 60-, 90-and 120-year-old Liaodong oak(Quercus liaotungensis Koidz.) forests, Shaanxi, China in 2015.And the associated effects of biomasses of leaf litter and different sizes of roots(0–0.5, 0.5–1.0, 1.0–2.0 and >2.0 mm diameter) on SOC components were studied too.Results showed that the contents of high activated carbon(HAC), activated carbon(AC) and inert carbon(IC) in the macroaggregates, microaggregates and silt and clay fractions increased with restoration ages.Moreover, IC content in the microaggregates in topsoil(0–20 cm) rapidly increased;peaking in the 90-year-old restored forest, and was 5.74 times higher than AC content.In deep soil(20–80 cm), IC content was 3.58 times that of AC content.Biomasses of 0.5–1.0 mm diameter roots and leaf litter affected the content of aggregate fractions in topsoil, while the biomass of >2.0 mm diameter roots affected the content of aggregate fractions in deep soil.Across the soil profiles, macroaggregates had the highest capacity for HAC sequestration.The effects of restoration ages on soil aggregate fractions and SOC content were less in deep soil than in topsoil.In conclusion, natural vegetation restoration of Liaodong oak forests improved the contents of SOC, especially IC within topsoil and deep soil.The influence of IC on aggregate stability was greater than the other SOC components, and the aggregate stability was significantly affected by the biomasses of litter, 0.5–1.0 mm diameter roots in topsoil and >2.0 mm diameter roots in deep soil.Natural vegetation restoration of Liaodong oak forests promoted SOC sequestration by soil macroaggregates.展开更多
Field investigations and laboratory analysis were conducted to study the characteristics of soil water-stable aggregates during vegetation rehabilitation in typical grassland soils of the hilly-gullied loess area. The...Field investigations and laboratory analysis were conducted to study the characteristics of soil water-stable aggregates during vegetation rehabilitation in typical grassland soils of the hilly-gullied loess area. The relationship between water- stable aggregates and other soil properties was analyzed using canonical correlation analysis and principal component analysis. The results show that during the natural revegetation, the aggregates 〉 5 mm dominated and constituted between 50% and 80% of the total soil water-stable aggregates in most of the soil layers. The 2-5 mm aggregate class was the second main component. The mean value of water-stable aggregates 〉 5 mm within the 0-2 m soil profile under different plant communities decreased in the following order: Stipa grandis 〉 Stipa bungeana Trin. 〉 Artemisia sacrorum Ledeb. 〉 Thymus mongolicus Ronn. 〉 Hierochloe odorata (L.) Beauv. Clay, organic matter, and total N were the key factors that influenced the water stability of the aggregates. Total N and organic matter were the main factors that affected the water stability of the aggregates 〉 5 mm and 0.5-1 mm in size. The contents of Fe2O3, Al2O3, and physical clay (〈 0.01 mm) were the main factors which affected the water stability of the 1-2 and 0.25-0.5 mm aggregates.展开更多
Soil aggregation,microbial community,and functions(i.e.,extracellular enzyme activities;EEAs)are critical factors affecting soil C dynamics and nutrient cycling.We assessed soil aggregate distribution,stability,nutrie...Soil aggregation,microbial community,and functions(i.e.,extracellular enzyme activities;EEAs)are critical factors affecting soil C dynamics and nutrient cycling.We assessed soil aggregate distribution,stability,nutrients,and microbial characteristics within>2,0.25-2,0.053-0.25,and<0.053 mm aggregates,based on an eight-year field experiment in a greenhouse vegetable field in China.The field experiment includes four treatments:100%N fertilizer(CF),50%substitution of N frtilizer with manure(M),straw(S),and manure plus straw(MS).The amounts of nutrient(N,P20,and K20)input were equal in each treatment.Results showed higher values of mean weight diameter in organic amended soils(M,MS,and S,2.43-2.97)vs.CF-amended soils(1.99).Relative to CF treatment,organic amendments had positive effects on nutrient(i.e.,available N,P,and soil organic C(SOC))conditions,microbial(e.g,bacterial and fungal)growth,and EEAs in the>0.053 mm aggregates,but not in the<0.053 mm aggregates.The 0.25-0.053 mm aggregates exhibited better nutrient conditions and hydrolytic activity,while the<0.053 mm aggregates had poor nutrient conditions and higher oxidative activity among aggregates,per SOC,available N,available P,and a series of enzyme activities.These results indicated that the 0.25-0.053 mm(<0.053 mm)aggregates provide suitable microhabitats for hydrolytic(oxidative)activity.Interestingly,we found that hydrolytic and oxidative activities were mainly impacted by fertilization(58.5%,P<0.01)and aggregate fractions(50.5%,P<0.01),respectively.The hydrolytic and oxidative activities were significantly(P<0.01)associated with nutrients(SOC and available N)and pH,electrical conductivity,respectively.Furthermore,SOC,available N,and available P closely(P<0.05)afected microbial communities within>0.25,0.25-0.053,and<0.053 mm aggregates,respectively.These findings provide several insights into microbial characteristics within aggregates under dfferent frilization modes in the greenhouse vegetable production system in China.展开更多
基金supported by the Shenyang Municipal Science and Technology Project,China(23-409-2-03)the Liaoning Provincial Department of Science and Technology Project,China(Z20230183)the Liaoning Provincial Applied Basic Research Program,China(2022JH2/101300173).
文摘Both soil organic carbon (SOC) and iron (Fe) oxide content, among other factors, drive the formation and stability of soil aggregates.However, the mechanism of these drivers in greenhouse soil fertilized with organic fertilizer is not well understood.In a 3-year field experiment, we aimed to investigate the factors which drive the stability of soil aggregates in greenhouse soil.To explore the impact of organic fertilizer on soil aggregates, we established four treatments:no fertilization (CK);inorganic fertilizer (CF);organic fertilizer (OF);and combined application of inorganic and organic fertilizers(COF).The application of organic fertilizer significantly enhanced the stability of aggregates, that is it enhanced the mean weight diameter, geometric mean diameter and aggregate content (%) of>0.25 mm aggregate fractions.OF and COF treatments increased the concentration of SOC, especially the aliphatic-C, aromatic-C and polysaccharide-C components of SOC, particularly in>0.25 mm aggregates.Organic fertilizer application significantly increased the content of free Fe(Fed), reactive Fe (Feo), and non-crystalline Fe in both bulk soil and aggregates.Furthermore, non-crystalline Fe showed a positive correlation with SOC content in both bulk soil and aggregates.Both non-crystalline Fe and SOC were significantly positively correlated with>2 mm mean weight diameter.Overall, we believe that the increase of SOC, aromatic-C, and non-crystal ine Fe concentrations in soil after the application of organic fertilizer is the reason for improving soil aggregate stability.
文摘Developing realistic soil carbon (C) sequestration strategies for China's sustainable agriculture relies on accurate estimates of the amount, retention and turnover rates of C stored in paddy soils. Available C estimates to date are predominantly for the tilled and flood-irrigated surface topsoil (ca. 30 cm). Such estimates cannot be used to extrapolate to soil depths of 100 cm since soil organic carbon (SOC) generally shows a sharp decrease with depth. In this research, composite soil samples were collected at several depths to 100 cm from three representative paddy soils in the Taihu Lake region, China. Soil organic carbon distribution in the profiles and in aggregate-size fractions was determined. Results showed that while SOC decreased exponentially with depth to 100 cm, a substantial proportion of the total SOC (30%-40%) is stored below the 30 cm depth. In the carbon-enriched paddy topsoils, SOC was found to accumulate preferentially in the 2-0.25 and 0.25-0.02 mm aggregate size fractions. δ^13C analysis of the coarse micro-aggregate fraction showed that the high degree of C stratification in the paddy topsoil was in agreement with the occurrence of lighter δ^1313C in the upper 30 cm depth. These results suggest that SOC stratification within profiles varies with different pedogenetical types of paddy soils with regards to clay and iron oxyhydrates distributions. Sand-sized fractions of aggregates in paddy soil systems may play a very important role in carbon sequestration and turnover, dissimilar to other studied agricultural systems.
基金the National Natural Science Foundation of China(40231016)the National Key Technologies R&D Program of China(2006BAD05B01-02)
文摘The interaction of soil aggregate dynamics with soil organic carbon is complex with varied spatio-temporal processes in macro-and micro-aggregates. This paper is to determine the aggregation of soil aggregates in purple soils (Regosols in FAO Taxonomy or Entisols in USDA Taxonomy) for four types of land use, cropland [corn (Zea mays L.)], orchard (citrus), forestland (bamboo or cypress), and barren land (wild grass), and to explore their relationship with soil organic carbon in the Sichuan basin of southwestern China. Procedures and methods, including manual dry sieving procedure, Yoder's wet sieving procedure, pyrophosphates solution method, and Kachisky method, are used to acquire dry, wet, and chemically stable aggregates, and microaggregates. Light and heavy fractions of soil organic carbon were separated using 2.0 g·mL^-1 HgI2-KI mixed solution. The loosely, stably, and tightly combined organic carbon in heavy fraction were separated by extraction with 0.1 M NaOH and 0.1 M NaOH-0.1M Na4P2O7 mixed solution (pH 13). The results show that the contents of dry and wet macroaggregates 〉0.25 mm in diameter were 974.1 and 900.0 g·kg^-1 highest in red brown purple soils under forestland, while 889.6 and 350.6 g·kg^-1 lowest in dark purple soil and lowest in grey brown purple soils under cropland, respectively. The chemical stability of macroaggregates was lowest in grey brown purple soil with 8.47% under cropland, and highest in red brown purple soil with 69.34% under barren land. The content of microaggregates in dark purple soils was 587g·kg^-1 higher than brown purple soils, while 655g·kg^-1 in red brown purple soils was similar to grey brown purple soils (651g·kg^-1). Cropland conditions, only 38.4% of organic carbon was of the combined form, and 61.6% of that existed in light fraction. Forestland conditions, 90.7% of organic carbon in red brown purple soil was complexed with minerals as a form of humic substances. The contents and stability of wet aggregates 〉 0.25 mm, contents and stability of chemically stable aggregates 〉0.25 mm, contents of microaggregates 〉 0.01 mm, contents of aggregated primary particle (d〈0.01 mm) and degree of primary particles (d 〈0.01 mm) aggregation were closely related to the concentrations of total soil organic carbon, and loosely and tightly combined organic carbon in heavy fraction. Soil microaggregation could be associated with organic carbon concentration and its combined forms in heavy fraction. There was a direct relationship between microaggregation and macroaggregation of soil primary particles, because the contents of wet aggregates 〉 0.25 mm and its water stability of aggregates were highly correlated with the contents of aggregated primary particle (d 〈 0.01 mm) and the degree of primary particles (d 〈 0.01 mm) aggregation.
基金supported by the National Natural Science Foundation of China(32071968)the Jiangsu Agricultural Science and Technology Innovation Fund,China(CX(22)2015))the Jiangsu Collaborative Innovation Center for Modern Crop Production,China。
文摘Straw return is a promising strategy for managing soil organic carbon(SOC)and improving yield stability.However,the optimal straw return strategy for sustainable crop production in the wheat(Triticum aestivum L.)-cotton(Gossypium hirsutum L.)cropping system remains uncertain.The objective of this study was to quantify the long-term(10 years)impact of carbon(C)input on SOC sequestration,soil aggregation and crop yields in a wheat-cotton cropping system in the Yangtze River Valley,China.Five treatments were arranged with a single-factor randomized design as follows:no straw return(Control),return of wheat straw only(Wt),return of cotton straw only(Ct),return of 50%wheat and 50%cotton straw(Wh-Ch)and return of 100%wheat and 100%cotton straw(Wt-Ct).In comparison to the Control,the SOC content increased by 8.4 to 20.2%under straw return.A significant linear positive correlation between SOC sequestration and C input(1.42-7.19 Mg ha^(−1)yr^(−1))(P<0.05)was detected.The percentages of aggregates of sizes>2 and 1-2 mm at the 0-20 cm soil depth were also significantly elevated under straw return,with the greatest increase of the aggregate stability in the Wt-Ct treatment(28.1%).The average wheat yields increased by 12.4-36.0%and cotton yields increased by 29.4-73.7%,and significantly linear positive correlations were also detected between C input and the yields of wheat and cotton.The average sustainable yield index(SYI)reached a maximum value of 0.69 when the C input was 7.08 Mg ha^(−1)yr^(−1),which was close to the maximum value(SYI of 0.69,C input of 7.19 Mg ha^(−1)yr^(-1))in the Wt-Ct treatment.Overall,the return of both wheat and cotton straw was the best strategy for improving SOC sequestration,soil aggregation,yields and their sustainability in the wheat-cotton rotation system.
基金financially supported by the Joint Funds of the National Natural Science Foundation of China(U22A20609)the National Key Research and Development Program of China(2021YFD1901102-4)+2 种基金the State Key Laboratory of Integrative Sustainable Dryland Agriculture(in preparation)the Shanxi Agricultural University,China(202003-3)the Open Fund from the State Key Laboratory of Soil Environment and Nutrient Resources of Shanxi Province,China(2020002)。
文摘Tillage practices during the fallow period benefit water storage and yield in dryland wheat crops.However,there is currently no clarity on the responses of soil organic carbon(SOC),total nitrogen(TN),and available nutrients to tillage practices within the growing season.This study evaluated the effects of three tillage practices(NT,no tillage;SS,subsoil tillage;DT,deep tillage)over five years on soil physicochemical properties.Soil samples at harvest stage from the fifth year were analyzed to determine the soil aggregate and aggregate-associated C and N fractions.The results indicated that SS and DT improved grain yield,straw biomass and straw carbon return of wheat compared with NT.In contrast to DT and NT,SS favored SOC and TN concentrations and stocks by increasing the soil organic carbon sequestration rate(SOCSR)and soil nitrogen sequestration rate(TNSR)in the 0-40 cm layer.Higher SOC levels under SS and NT were associated with greater aggregate-associated C fractions,while TN was positively associated with soluble organic nitrogen(SON).Compared with DT,the NT and SS treatments improved soil available nutrients in the 0-20 cm layer.These findings suggest that SS is an excellent practice for increasing soil carbon,nitrogen and nutrient availability in dryland wheat fields in North China.
基金co-funded by the National Natural Science Foundation of China(U204020742277323)+2 种基金the 111 Project of Hubei Province(2021EJD026)the open fund of Key Laboratory of Geological Hazards on Three Gorges Reservoir Area(China Three Gorges University)Ministry of Education(2022KDZ24).
文摘Soil aggregate is the basic structural unit of soil,which is the foundation for supporting ecosystem functions,while its composition and stability is significantly affected by the external environment.This study was conducted to explore the effect of external environment(wetting-drying cycles and acidic conditions)on the soil aggregate distribution and stability and identify the key soil physicochemical factors that affect the soil aggregate stability.The yellow‒brown soil from the Three Gorges Reservoir area(TGRA)was used,and 8 wetting-drying conditions(0,1,2,3,4,5,10 and 15 cycles)were simulated under 4 acidic conditions(pH=3,4,5 and 7).The particle size distribution and soil aggregate stability were determined by wet sieving method,the contribution of environmental factors(acid condition,wetting-drying cycle and their combined action)to the soil aggregate stability was clarified and the key soil physicochemical factors that affect the soil aggregate stability under wetting-drying cycles and acidic conditions were determined by using the Pearson’s correlation analysis,Partial least squares path modeling(PLS‒PM)and multiple linear regression analysis.The results indicate that wetting-drying cycles and acidic conditions have significant effects on the stability of soil aggregates,the soil aggregate stability gradually decreases with increasing number of wetting-drying cycles and it obviously decreases with the increase of acidity.Moreover,the combination of wetting-drying cycles and acidic conditions aggravate the reduction in the soil aggregate stability.The wetting-drying cycles,acidic conditions and their combined effect imposes significant impact on the soil aggregate stability,and the wetting-drying cycles exert the greatest influence.The soil aggregate stability is significantly correlated with the pH,Ca^(2+),Mg^(2+),maximum disintegration index(MDI)and soil bulk density(SBD).The PLS‒PM and multiple linear regression analysis further reveal that the soil aggregate stability is primarily influenced by SBD,Ca^(2+),and MDI.These results offer a scientific basis for understanding the soil aggregate breakdown mechanism and are helpful for clarifying the coupled effect of wetting-drying cycles and acid rain on terrestrial ecosystems in the TGRA.
基金supported financially by the National Natural Science Foundation of China(41807102,U1710255-3 and 41907215)the Special Fund for Science and Technology Innovation Teams of Shanxi Province,China(202304051001042)the Distinguished and Excellent Young Scholar Cultivation Project of Shanxi Agricultural University,China(2022YQPYGC05)。
文摘We studied changes in the concentrations of aggregate-cementing agents after different reclamation times and with different fertilization regimes,as well as the formation mechanism of aggregates in reclaimed soil,to provide a theoretical basis for rapid reclamation of soil fertility in the subsidence area of coal mines in Shanxi Province,China.In this study,soil samples of 0–20 cm depth were collected from four fertilization treatments of a longterm experiment started in 2008:no fertilizer (CK),inorganic fertilizer (NPK),chicken manure compost (M),and50%inorganic fertilizer plus 50%chicken manure compost (MNPK).The concentrations of cementing agents and changes in soil aggregate size distribution and stability were analysed.The results showed that the formation of>2 mm aggregates,the aggregate mean weight diameter (MWD),and the proportion of>0.25 mm water-stable aggregates (WR_(0.25)) increased significantly after 6 and 11 years of reclamation.The concentration of organic cementing agents tended to increase with reclamation time,whereas free iron oxide (Fed) and free aluminium oxide(Ald) concentrations initially increased but then decreased.In general,the MNPK treatment signi?cantly increased the concentrations of organic cementing agents and CaCO_(3),and CaCO_(3) increased by 60.4%at 11 years after reclamation.Additionally,CaCO_(3) had the greatest effect on the stability of aggregates,promoting the formation of>0.25 mm aggregates and accounting for 54.4%of the variance in the proportion and stability of the aggregates.It was concluded that long-term reclamation is bene?cial for improving soil structure.The MNPK treatment was the most effective measure for increasing maize grain yield and concentration of organic cementing agents and CaCO_(3).
基金financially supported by the National Key Technology Research and Development Program of China(2021YFD1901001-08)the Key Scientific and Technological Project of Henan Provincial Education Department,China(232102111119)。
文摘Nitrogen(N)is a key factor in the positive response of cereal crops that follow leguminous crops when compared to gramineous crops in rotations,with the nonrecyclable rhizosphere-derived N playing an important role.However,quantitative assessments of differences in the N derived from rhizodeposition(NdfR)between legumes and gramineous crops are lacking,and comparative studies on their contributions to the subsequent cereals are scarce.In this study,we conducted a meta-analysis of NdfR from leguminous and gramineous crops based on 34 observations published worldwide.In addition,pot experiments were conducted to study the differences in the NdfR amounts,distributions and subsequent effects of two major wheat(Triticum aestivum L.)-preceding crops,corn(Zea mays L.)and soybean(Glycine max L.),by the cotton wick-labelling method in the main wheat-producing areas of China.The meta-analysis results showed that the NdfR of legumes was significantly greater by 138.93%compared to gramineous crops.In our pot experiment,the NdfR values from corn and soybean were 502.32 and 944.12 mg/pot,respectively,and soybean was also significantly higher than corn,accounting for 76.91 and 84.15%of the total belowground nitrogen of the plants,respectively.Moreover,in different soil particle sizes,NdfR was mainly enriched in the large macro-aggregates(>2 mm),followed by the small macro-aggregates(2–0.25 mm).The amount and proportion of NdfR in the macro-aggregates(>0.25 mm)of soybean were 3.48 and 1.66 times higher than those of corn,respectively,indicating the high utilization potential of soybean NdfR.Regarding the N accumulation of subsequent wheat,the contribution of soybean NdfR to wheat was approximately 3 times that of corn,accounting for 8.37 and 4.04%of the total N uptake of wheat,respectively.In conclusion,soybean NdfR is superior to corn in terms of the quantity and distribution ratio of soil macro-aggregates.In future field production,legume NdfR should be included in the nitrogen pool that can be absorbed and utilized by subsequent crops,and the role and potential of leguminous plants as nitrogen source providers in crop rotation systems should be fully utilized.
基金This study was supported by the Knowledge innovation project of Chinese Academy of Sciences (KZCX2-Sw-319)
文摘Structural properties of forest soils have important hydro-ecological function and can influence the soil water-physical characters and soil erosion. The experimental soil samples were obtained in surface horizon (0-10 cm) from different subalpine forest types on east slope of Gongga Mountain in the upriver area of Yangtze River China in May 2002. The soil bulk density, porosity, stable infiltration rate, aggregate distribution and particle-size distribution were analyzed by the routine methods in room, and the features and effects on eco-environment of soil aggregation were studied. The results showed that the structure of soil under mixed mature forest is in the best condition and can clearly enhance the eco-environmental function of soil, and the soil structure under the clear-cutting forest is the worst, the others are ranked between them. The study results can offer a basic guidance for the eco-environmental construction in the upper reaches of Yangtze River.
文摘[Objective] This study was conducted to investigate the effects of tradition-al fertilization and formula fertilization by soil testing on the chemical forms of nitro-gen in dark brown soil and its distribution in different aggregates. [Method] A physi-co-chemistry method was adopted in a comparative study on the chemical forms of nitrogen and their distribution in different-sized aggregates of dark brown soil under traditional fertilization and formula fertilization by soil testing respectively. [Result] Compared with traditional fertilization in spring and autumn, the formula fertilization by soil testing averagely decreased, the total nitrogen in soil by 23.2% in spring and by 20% in autumn in the soil layer of 0-20 cm, by 48.8% in the layer of 20-40 cm. Ammonium nitrogen was so sensitive to the methods of fertilization that the content of ammonium nitrogen was reduced much more under formula fertitization by soil testing in autumn than under traditional fertilization. Nitrogen in soil under traditional fertilization pattern was mainly distributed in the aggregates of 0-0.25 and 0.5-1 mm, while in formula fertilization by soil testing it was mainly distributed in the aggregates of 0.25-0.5 and 0-0.25 mm. [Conclusion] The study proved that for-mula fertilization by soil testing helped to reduce the risk of nitrogen pol ution and had huge effects on the chemical forms and distribution of nitrogen in different ag-gregates in dark brown soil.
基金Supported by the National Basic Research Program(973Program)of China(No.2009CB118601)the Foundation of the Chinese Academy of Agricultural Sciences(No.082060302-19)+2 种基金the National Natural Science Foundation of China(No.30571094)the Program for New Century Excellent Talents in University,China(No.NCET-05-0492)the Doctoral Foundation of the Ministry of Education,China(No.B200608)
文摘Increasing evidence has shown that conservation tillage is an effective agricultural practice to increase carbon (C) sequestration in soils. In order to understand the mechanisms underlying the responses of soil organic carbon (SOC) to tillage regimes, physical fractionation techniques were employed to evaluate the effect of long-term no-tillage (NT) on soil aggregation and SOC fractions. Results showed that NT increased the concentration of total SOC by 18.1% compared with conventional tillage (CT) under a long-term maize (Zea mays L.) cropping system in Northeast China. The proportion of soil large macroaggregates (〉 2 000 μm) was higher in NT than that in CT, while small macroaggregates (250-2 000μm) showed an opposite trend. Therefore, the total proportion of macroaggregates (〉 2 000 and 250-2 000μm) was not affected by tillage management. However, C concentrations of macroaggregates on a whole soil basis were higher under NT relative to CT, indicating that both the amount of aggregation and aggregate turnover affected C stabilization. Carbon concentrations of intra-aggregate particulate organic matter associated with microaggregates (iPOM-m) and microaggregates occluded within macroaggregates (iPOM-mM) in NT were 1.6 and 1.8 times greater than those in CT, respectively. Carbon proportions of iPOM-n and iPOM-mM in the total SOC increased from 5.4% and 6.3% in CT to 7.2% and 9.7% in NT, respectively. Furthermore, the difference in the microaggregate protected C (i. e., iPOM-m and iPOM-mM) between NT and CT could explain 45.4% of the difference in the whole SOC. The above results indicate that NT stimulates C accumulation within microaggregates which then are further acted upon in the soil to form macroaggregates. The shift of SOC within microaggregates is beneficial for long-term C sequestration in soil. We also corroborate that the microaggregate protected C is useful as a pool for assessing the impact of tillage management on SOC storage.
文摘Tillage greatly influences the aggregation and stability of soil aggregates. This study investigated the effects of conservation tillage on soil aggregate characteristics. During a four-year study period (2001-2005), soils were sampled from no-tillage (NT), rotary tillage (RT), and conventional tillage (moldboard tillage, CT) plots at the Luancheng Agriculture and Ecology Experimental Station in Hebei Province, China, and the amount, size distribution, and fractal dimension of the aggregates were examined by dry and wet sieving methods. The results indicated that NT significantly increased the topsoil (0-5 cm) bulk density (BD), while RT maintained a lower BD as CT. Dry sieving results showed that NT had higher macro-aggregate content (R0.25), and a larger mean weight diameter (MWD) and geometric mean diameter (GMD) than other treatments in the 0-10 cm layer, while RT showed no difference from CT. In wet sieving, results showed that most of the aggregates were unstable, and the MWD and GMD of water-table aggregates showed the trend of NT 〉 RT 〉 CT. At 0-5 cm layer, the fractal dimension (D) of water-stable aggregates under NT was lower than it was under RT and CT. At 5-10 cm, RT yielded the highest D, and showed stability. After four years, NT increased the aggregation and the stability of soil aggregates; while due to intense disturbance, the aggregation and stability of the upper layer (0-10 cm) under RT and CT decreased.
基金Project supported by the National Natural Science Foundation of China (No.40371059).
文摘Wet stability, penetration resistance (PR), and tensile strength (TS) of paddy soils under a fertilization experiment for 22 years were determined to elucidate the function of soil organic matter in paddy soil stabilization. The treatments included no fertilization (CK), normal chemical fertilization (NPK), double the NPK application rates (2NPK), and NPK mixed with organic manure (NPK+OM). Compared with CK, Fertilization increased soil organic carbon (SOC) and soil porosity. The results of soil aggregate fragmentation degree (SAFD) showed that fast wetting by water was the key fragmentation mechanism. Among the treatments, the NPK+OM treatment had the largest size of water-stable aggregates and greatest normal mean weight diameter (NMWD) (P ≤ 0.05), but the lowest PR and TS in both cultivated horizon (Ap) and plow pan. The CK and 2NPK treatments were measured with PR 〉 2.0 MPa and friability index 〈 0.20, respectively, in the Ap horizon, suggesting that the soils was mechanically unfavourable to root growth and tillage. In the plow pan, the fertilization treatments had greater TS and PR than in CK. TS and PR of the tested soil aggregates were negatively correlated to SOC content and soil porosity. This study suggested that chemical fertilization could cause deterioration of mechanical properties while application of organic manure could improve soil stability and mechanical properties.
基金funded by the National Natural Science Foundation of China(31261140367,31170489 and 30870414)the China Postdoctoral Science Foundation(201104164 and 20100470408)the S&T Innovation Program of Chinese Academy of Agricultural Sciences
文摘Organic amendment is considered as an effective way to increase soil organic carbon (SOC) stock in croplands. To better understand its potential for SOC sequestration, whether SOC saturation could be observed in an intensive agricultural ecosystem receiving long-term composted manure were examined. Different SOC pools were isolated by physical fractionation techniques ofa Cambisol soil under a long-term manure experiment with wheat-maize cropping in North China Plain. A field experiment was initiated in 1993, with 6 treatments including control (i.e., without fertilization), chemical fertilizer only, low rate of traditional composted manure (7.5 t ha-h), high rate of traditional composted manure (15 t ha-~), low rate ofbio-composted manure (7.5 t ha-h) and high rate of bio-composted manure (15 t ha-h). The results showed that consecutive (for up to 20 years) composted manure amendments significantly improved soil macro-aggregation, aggregate associated SOC concentration, and soil structure stability. In detail, SOC concentration in the sand-sized fraction (〉53 ~tm) continued to increase with manure application rate, while the silt (2-53 I.tm) and clay (〈2 ~tm) particles showed no further increase with greater C inputs, exhibiting the C saturation. Further physical separation of small macro-aggregates (250-2 000 tam) into subpools showed that the non-protected coarse particulate organic matter (cPOM, 〉250 pro) was the fraction in which SOC continued to increase with increasing manure application rate. In contrast, the chemical and physical protected C pools (i.e., micro-aggregates and silt-clay occluded in the small macro- aggregates) exhibited no additional C sequestration when the manure application rate was increased. It can be concluded that repeated manure amendments can increase soil macro-aggregation and lead to the increase in relatively stable C pools, showing hierarchical saturation behavior in the intensive cropping system of North China Plain.
文摘The composition and stability of soil aggregate are closely related to soil quality, soil erosion, and agricultural sustainability. In this study, 49 soil samples at the 0-10 cm surface layer were collected from four soil types (i.e., Ari-Sandic Primosols, Calci-Orthic Aridosols, Siltigi-Otrthic Anthrosols, and Ustic Cambosols) in the marginal farmland in the oasis of the middle Hexi Corridor region and was used to determine the characteristics of soil aggregates. The composition of dry- and wet- sieved aggregates and the physical and chemical properties (including soil particle distribution, soil organic carbon (SOC), calcium carbonate (CaCO3), and oxides of Fe^3+ and Al^3+) of the selected soils were analyzed. The results show that soil particle size distribution is dominated by fine sand fraction in most of soils except Ustic Cambosols. Soil organic carbon concentration is 5.88 ± 2.52 g kg^-1 on average, ranging from 4.75 g kg^-1 in Ari-Sandic Primosols to 10.51 g kg^-1 in Ustic Cambosols. The soils have high calcium carbonate (CaCO3) concentration, ranging from 84.7 to 164.8 g kg^-1, which is increased with soil fine particle and organic carbon content. The percentage of 〉0.25 mm dry aggregates ranges from 65.2% in Ari-Sandic Primosols to 94.6% in Ustic Cambosols, and large dry blocky aggregates (〉5 mm) is dominant in all soils. The mean weight diameter of dry aggregates (DMWD) ranges from 3.2 mm to 5.5 mm. The percentage of 〉0.25 mm water-stable aggregate is from 23.8% to 45.4%. The percentage of aggregate destruction (PAD) is from 52.4% to 66.8%, which shows a weak aggregate stability. Ari-Sandic Primosols has the highest PAD. The distribution and characteristics of soil aggregates are in favor of controlling soil wind erosion. However, the stability of aggregate of all soils is weak and soils are prone to disperse and harden after irrigation. The mass of macro-aggregates and DMWD are positively significantly correlated with the contents of soil clay and silt, soil organic carbon (SOC), CaCO3, and oxides of Fe^3+ and Al^3+. Soil fine silt and clay, SOC and CaCO3 are important agents of aggregation in this region, and the effect of SOC and CaCO3 on aggregate stability is more significant than that of soil silt and clay. Converting cropland to alfalfa forage land can increase SOC concentration, and in turn, enhance the formation of aggregates and stability. For the marginal farmlands in this fragile ecological area, converting cropland to alfalfa grassland or performing crop-grass rotation is an effective and basic strategy to improve soil structure and quality, to mitigate soil wind erosion, and to enhance oasis agricultural sustainability.
基金the National Key Research and Development Program of China(2017YFC0504601)the National Natural Science Foundation of China(41671513).
文摘The distribution of binding agents(i.e.,soil organic carbon(SOC)and glomalin-related soil protein(GRSP))in soil aggregates was influenced by many factors,such as plant characteristics and soil properties.However,how these factors affect binding agents and soil aggregate stability along a climatic gradient remained unclear.We selected the Robinia pseudoacacia L.forests from semi-arid to semi-humid of the Loess Plateau,China to analyze the plant biomass,soil physical-chemical properties,SOC and GRSP distribution in different sized soil aggregates.We found that from semi-arid to semi-humid forests:(1)the proportion of macro-aggregates(>0.250 mm)significantly increased(P<0.05),whereas those of micro-aggregates(0.250–0.053 mm)and fine materials(<0.053 mm)decreased and soil aggregate stability was increased;(2)the contents of SOC and GRSP in macro-aggregates and micro-aggregates significantly increased,and those in fine materials decreased;(3)the contribution of SOC to soil aggregate stability was greater than those of total GRSP and easily extractable GRSP;(4)soil properties had greater influence on binding agents than plant biomass;and(5)soil aggregate stability was enhanced by increasing the contents of SOC and GRSP in macro-aggregates and soil property was the important part during this process.Climate change from semi-arid to semi-humid forests is important factor for soil structure formation because of its positive effect on soil aggregates.
基金funded by the National Natural Science Foundation of China(90302001)CAS Knowledge Innovation(KZCX3-SW-421)the Fund of the State Key Laboratory of Soil Erosion and DrylandFarming on the Loess Plateau(10501-152).
文摘Fractal method is a new method to estimate soil structure. It has been shown to be a useful tool in studies related to physical properties of soil as well as erosion and other hydrological processes. Fractal dimension was used to study the soil structure in soil at different stages of vegetative succession on the Ziwuling Mountains. The land use and vegetation types included cultivated land, abandoned land, grassland, two types of shrub land, and three types of forests. The grassland, shrub land, and forested areas represented a continuum in vegetative succession that had occurred naturally, as the land was abandoned in 1862. Disturbed and undisturbed soil samples were collected from ten vegetation types from depths of 0-10, 10-20, and 20-30 cm on the Ziwuling Mountains, at a site with an elevation of about 1 500 m. Particle size distribution was determined by the pipette method and aggregate size distribution was determined by wet sieving. The results were used to calculate the particle and aggregate fractal dimension. The results showed that particle and aggregate fractal dimensions varied between vegetation types. There was a positive correlation between the particle fractal dimension and the weight of particles with diameter 〈 0.001 mm, but no relationship between particle fractal dimension and the other particle size classes. Particle fractal dimension was lower in vegetated soils compared to cropland and there was no consistent relationship between fractal dimension and vegetation type. Aggregate fractal dimension was positively correlated with the weight of 〉 0.25 mm aggregates. Aggregate fractal dimension was lower in vegetated soils compared with cropland. In contrast to particle fractal dimension, aggregate fractal dimension described changes in soil structure associated with vegetative succession. The results of this study indicate that aggregate fractal dimension is more effective in describing soil structure and function compared with particle fractal dimension.
基金funded by the National Key Research and Development Program of China (2017YFC0504601)the Science and Technology Service Network Initiative of Chinese Academy of Sciences (KFJ-STS-ZDTP-036)the National Natural Science Foundation of China (41671513)
文摘The lack of clarity of how natural vegetation restoration influences soil organic carbon(SOC) content and SOC components in soil aggregate fractions limits the understanding of SOC sequestration and turnover in forest ecosystems.The aim of this study was to explore how natural vegetation restoration affects the SOC content and ratio of SOC components in soil macroaggregates(>250 μm), microaggregates(53–250 μm), and silt and clay(<53 μm) fractions in 30-, 60-, 90-and 120-year-old Liaodong oak(Quercus liaotungensis Koidz.) forests, Shaanxi, China in 2015.And the associated effects of biomasses of leaf litter and different sizes of roots(0–0.5, 0.5–1.0, 1.0–2.0 and >2.0 mm diameter) on SOC components were studied too.Results showed that the contents of high activated carbon(HAC), activated carbon(AC) and inert carbon(IC) in the macroaggregates, microaggregates and silt and clay fractions increased with restoration ages.Moreover, IC content in the microaggregates in topsoil(0–20 cm) rapidly increased;peaking in the 90-year-old restored forest, and was 5.74 times higher than AC content.In deep soil(20–80 cm), IC content was 3.58 times that of AC content.Biomasses of 0.5–1.0 mm diameter roots and leaf litter affected the content of aggregate fractions in topsoil, while the biomass of >2.0 mm diameter roots affected the content of aggregate fractions in deep soil.Across the soil profiles, macroaggregates had the highest capacity for HAC sequestration.The effects of restoration ages on soil aggregate fractions and SOC content were less in deep soil than in topsoil.In conclusion, natural vegetation restoration of Liaodong oak forests improved the contents of SOC, especially IC within topsoil and deep soil.The influence of IC on aggregate stability was greater than the other SOC components, and the aggregate stability was significantly affected by the biomasses of litter, 0.5–1.0 mm diameter roots in topsoil and >2.0 mm diameter roots in deep soil.Natural vegetation restoration of Liaodong oak forests promoted SOC sequestration by soil macroaggregates.
基金the National Natural Science Foundation of China (Nos.40461006 and 40701095) the NationalKey Basic Research Program of China (973 Program) (No.2007CB407201).
文摘Field investigations and laboratory analysis were conducted to study the characteristics of soil water-stable aggregates during vegetation rehabilitation in typical grassland soils of the hilly-gullied loess area. The relationship between water- stable aggregates and other soil properties was analyzed using canonical correlation analysis and principal component analysis. The results show that during the natural revegetation, the aggregates 〉 5 mm dominated and constituted between 50% and 80% of the total soil water-stable aggregates in most of the soil layers. The 2-5 mm aggregate class was the second main component. The mean value of water-stable aggregates 〉 5 mm within the 0-2 m soil profile under different plant communities decreased in the following order: Stipa grandis 〉 Stipa bungeana Trin. 〉 Artemisia sacrorum Ledeb. 〉 Thymus mongolicus Ronn. 〉 Hierochloe odorata (L.) Beauv. Clay, organic matter, and total N were the key factors that influenced the water stability of the aggregates. Total N and organic matter were the main factors that affected the water stability of the aggregates 〉 5 mm and 0.5-1 mm in size. The contents of Fe2O3, Al2O3, and physical clay (〈 0.01 mm) were the main factors which affected the water stability of the 1-2 and 0.25-0.5 mm aggregates.
基金Fund for China Agriculture Research 3ystem(CAR3-23-B02)the National Key Research and Development Program of China(2016YFD0201001)the Key Research and Development Program of Shandong Province,China(2017CXGC0206).
文摘Soil aggregation,microbial community,and functions(i.e.,extracellular enzyme activities;EEAs)are critical factors affecting soil C dynamics and nutrient cycling.We assessed soil aggregate distribution,stability,nutrients,and microbial characteristics within>2,0.25-2,0.053-0.25,and<0.053 mm aggregates,based on an eight-year field experiment in a greenhouse vegetable field in China.The field experiment includes four treatments:100%N fertilizer(CF),50%substitution of N frtilizer with manure(M),straw(S),and manure plus straw(MS).The amounts of nutrient(N,P20,and K20)input were equal in each treatment.Results showed higher values of mean weight diameter in organic amended soils(M,MS,and S,2.43-2.97)vs.CF-amended soils(1.99).Relative to CF treatment,organic amendments had positive effects on nutrient(i.e.,available N,P,and soil organic C(SOC))conditions,microbial(e.g,bacterial and fungal)growth,and EEAs in the>0.053 mm aggregates,but not in the<0.053 mm aggregates.The 0.25-0.053 mm aggregates exhibited better nutrient conditions and hydrolytic activity,while the<0.053 mm aggregates had poor nutrient conditions and higher oxidative activity among aggregates,per SOC,available N,available P,and a series of enzyme activities.These results indicated that the 0.25-0.053 mm(<0.053 mm)aggregates provide suitable microhabitats for hydrolytic(oxidative)activity.Interestingly,we found that hydrolytic and oxidative activities were mainly impacted by fertilization(58.5%,P<0.01)and aggregate fractions(50.5%,P<0.01),respectively.The hydrolytic and oxidative activities were significantly(P<0.01)associated with nutrients(SOC and available N)and pH,electrical conductivity,respectively.Furthermore,SOC,available N,and available P closely(P<0.05)afected microbial communities within>0.25,0.25-0.053,and<0.053 mm aggregates,respectively.These findings provide several insights into microbial characteristics within aggregates under dfferent frilization modes in the greenhouse vegetable production system in China.