期刊文献+
共找到350篇文章
< 1 2 18 >
每页显示 20 50 100
Multifunctional interfacial molecular bridge enabled by an aggregation-induced emission strategy for enhancing efficiency and UV stability of perovskite solar cells
1
作者 Shuhang Bian Yuqi Wang +13 位作者 Fancong Zeng Zhongqi Liu Bin Liu Yanjie Wu Long Shao Yongzhi Shao Huan Zhang Shuainan Liu Jin Liang Xue Bai Lin Xu Donglei Zhou Biao Dong Hongwei Song 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期588-595,I0013,共9页
The interface defects between the electron transport layer(ETL)and the perovskite layer,as well as the low ultraviolet(UV)light utilization rate of the perovskite absorption layer,pose significant challenges for the c... The interface defects between the electron transport layer(ETL)and the perovskite layer,as well as the low ultraviolet(UV)light utilization rate of the perovskite absorption layer,pose significant challenges for the commercialization of perovskite solar cells(PSCs).To address this issue,this paper proposes an innovative multifunctional interface modulation strategy by introducing aggregation-induced emission(AIE)molecule 5-[4-[1,2,2-tri[4-(3,5-dicarboxyphenyl)phenyl]ethylene]phenyl]benzene-1,3-dicarboxylic acid(H_(8)ETTB)at the SnO_(2)ETL/perovskite interface.Firstly,the interaction of H_(8)ETTB with the SnO_(2)surface,facilitated by its carboxyl groups,is effective in passivating surface defects caused by noncoord inated Sn and O vacancies.This interaction enhances the conductivity of the SnO_(2)film and adjusts energy levels,leading to enhanced charge carrier transport.Simultaneously,H_(8)ETTB can passivate noncoord inated Pb^(2+)ions at the perovskite interface,promoting perovskite crystallization and reducing the interface energy barrier,resulting in a perovskite film with low defects and high crystalline quality.More importantly,the H_(8)ETTB molecule,can convert UV light into light absorbable by the perovskite,thereby reducing damage caused by UV light and improving the device's utilization of UV.Consequently,the champion PSC based on SnO_(2)-H_(8)ETTB achieves an impressing efficiency of 23.32%and significantly improved photostability compared with the control device after continuous exposure to intense UV radiation.In addition,the Cs_(0.05)(FA_(0.95)MA_(0.05))_(0.95)Pb(I_(0.95)Br_(0.05))_(3)based device can achieve maximum efficiency of 24.01%,demonstrating the effectiveness and universality of this strategy.Overall,this innovative interface bridging strategy effectively tackles interface defects and low UV light utilization in PSCs,presenting a promising approach for achieving highly efficient and stable PSCs. 展开更多
关键词 Perovskite solar cells aggregation-induced emission Defect passivation EFFICIENCY UV stability
下载PDF
Utilization of aggregation-induced emission materials in urinary system diseases
2
作者 Haodong Xu Xin Chen +6 位作者 He Wang Chaozhong Wang Yunjie Guo Yuxin Lin Yuhua Huang Jianquan Hou Xuedong Wei 《Aggregate》 EI CAS 2024年第5期135-158,共24页
With the development of aggregation-induced emission(AIE)materials,the draw-backs of conventionalfluorescence materials subjected to aggregation-caused quenching(ACQ)have been resolved.This has allowed for the improvem... With the development of aggregation-induced emission(AIE)materials,the draw-backs of conventionalfluorescence materials subjected to aggregation-caused quenching(ACQ)have been resolved.This has allowed for the improvement of novel AIEfluorescent materials that exhibit enhanced photostability,a higher signal-to-noise ratio,and better imaging quality.Meanwhile,the enhanced phototherapeutic effect of AIE materials has garnered widespread attention in the realm of tumor treatment.The distinct physiological and anatomical characteristics of the urinary system make it suitable for the use of AIE materials.Additionally,AIE-based pho-totherapy provides a superior solution to deal with the weaknesses of conventional treatments for urologic neoplasms.In this review,the scientific advancement on the use of AIE materials in urinary system diseases since the emergence of the AIE con-cept is reviewed in detail.The review highlights the promise of AIE materials for biomarkers detection,fluorescence imaging(FLI)in vivo and in vitro,AIE-based phototherapy,and synergistic therapy from both diagnostic and therapeutic view-points.It isfirmly believed that AIE materials hold immense untapped potential for the diagnosis and treatment of urologic disease,as well as all diseases of the human body. 展开更多
关键词 aggregation-induced emission AIEgens cancer therapy fluorescence imaging urinary system diseases
原文传递
Highly specific characterization and discrimination of monosodium urate crystals in gouty arthritis based on aggregation-induced emission luminogens
3
作者 Wenjuan Wang Guiquan Zhang +5 位作者 Ziyi Chen Hanlin Xu Bohan Zhang Rong Hu Anjun Qin Yinghui Hua 《Bio-Design and Manufacturing》 SCIE EI CAS CSCD 2023年第6期704-717,共14页
Existing technologies used to detect monosodium urate(MSU)crystals for gout diagnosis are not ideal due to their low sensitivity and complexity of operation.The purpose of this study was to explore whether aggregation... Existing technologies used to detect monosodium urate(MSU)crystals for gout diagnosis are not ideal due to their low sensitivity and complexity of operation.The purpose of this study was to explore whether aggregation-induced emission luminogens(AIEgens)can be used for highly specific imaging of MSU crystals to assist in the diagnosis of gout.First,we developed a series of luminogens(i.e.,tetraphenyl ethylene(TPE)-NH_(2),TPE-2NH_(2),TPE-4NH_(2),TPE-COOH,TPE-2COOH,TPE-4COOH,and TPE-Ketoalkyne),each of which was then evenly mixed with MSU crystals.Next,optimal fluorescence imaging of each of the luminogens was characterized by a confocal laser scanning microscope(CLSM).This approach was used for imaging standard samples of MSU,hydroxyapatite(HAP)crystals,and mixed samples with 1:1 mass ratio of MSU/HAP.We also imaged samples from mouse models of acute gouty arthritis,HAP deposition disease,and comorbidities of interest.Subsequently,CLSM imaging results were compared with those of compensated polarized light microscopy,and we assessed the biosafety of TPE-Ketoalkyne in the RAW264.7 cell line.Finally,CLSM time series and three-dimensional imaging were performed on MSU crystal samples from human gouty synovial fluid and tophi.As a promising candidate for MSU crystal labeling,TPE-Ketoalkyne was found to detect MSU crystals accurately and rapidly in standard samples,animal samples,and human samples,and could precisely distinguish gout from HAP deposition disease.This work demonstrates that TPE-Ketoalkyne is suitable for highly specific and timely imaging of MSU crystals in gouty arthritis and may facilitate future research on MSU crystal-related diseases. 展开更多
关键词 GOUT Monosodium urate HYDROXYAPATITE TPE-Ketoalkyne aggregation-induced emission Confocal laser scanning microscope imaging
下载PDF
Visualizing Photodynamic Therapy in Transgenic Zebrafish Using Organic Nanoparticles with Aggregation-Induced Emission 被引量:3
4
作者 Purnima Naresh Manghnani Wenbo Wu +3 位作者 Shidang Xu Fang Hu Cathleen Teh Bin Liu 《Nano-Micro Letters》 SCIE EI CAS 2018年第4期61-69,共9页
Photodynamic therapy(PDT) employs accumulation of photosensitizers(PSs) in malignant tumor tissue followed by the light-induced generation of cytotoxic reactive oxygen species to kill the tumor cells. The success of P... Photodynamic therapy(PDT) employs accumulation of photosensitizers(PSs) in malignant tumor tissue followed by the light-induced generation of cytotoxic reactive oxygen species to kill the tumor cells. The success of PDT depends on optimal PS dosage that is matched with the ideal power of light. This in turn depends on PS accumulation in target tissue and light administration time and period.As theranostic nanomedicine is driven by multifunctional therapeutics that aim to achieve targeted tissue delivery and image-guided therapy, fluorescent PS nanoparticle(NP)accumulation in target tissues can be ascertained through fluorescence imaging to optimize the light dose and administration parameters. In this regard, zebrafish larvae provide a unique transparent in vivo platform to monitor fluorescent PS bio-distribution and their therapeutic efficiency. Using fluorescent PS NPs with unique aggregation-induced emission characteristics, we demonstrate for the first time the real-time visualization of polymeric NP accumulation in tumor tissue and, more importantly, the best time to conduct PDT using transgenic zebrafish larvae with inducible liver hyperplasia as an example. 展开更多
关键词 NANOMEDICINE Photodynamic therapy Transgenic zebrafish aggregation-induced emission Organic nanoparticles
下载PDF
Aggregation-induced emission luminogen for in vivo three-photon fuorescence lifetime microscopic imaging 被引量:3
5
作者 Huwei Ni Zicong Xu +3 位作者 Dongyu Li Ming Chen Ben Zhong Tang Jun Qian 《Journal of Innovative Optical Health Sciences》 SCIE EI CAS 2019年第5期95-104,共10页
Compared with visible light,near infrared(NIR)light has deeper penetration in biological tisues.Three-photon fuorescence microscopy(3PFM)can effectively utilize the NIR excitation to obtain high-contrast images in the... Compared with visible light,near infrared(NIR)light has deeper penetration in biological tisues.Three-photon fuorescence microscopy(3PFM)can effectively utilize the NIR excitation to obtain high-contrast images in the deep tisue.However,the weak three photon fluorescence signals may be not well presented in the traditional fuorescence intensity imaging mode.Fluorescence lifetime of certain probes is insensitive to the intensity of the excitation laser.Moreover,fluorescence lifetimne imaging microscopy(FLIM)can detect weak signals by utilizing time correlated single photon counting(TCSPC)technique.Thus,it would be an improved strategy to combine the 3PFM imaging with the FLIM together.Herein,DCDPP-2TPA,a novel agegation-induced emission luminogen(AIEgen),was adopted as the fluorescent probes.The three-photon absorption cros-section of the AlEgen,which has a deep-red fluorescence emission,was proved to be large.DCDPP-2TPA nanoparticles were synthesized,and the three photon fluorescence lifetime of which was measured in water.Moreover,in vrivo thre-photon fuorescence lifetime microscopic imaging of a craniotomy mouse was conducted via a home made optical system.High contrast cerebrovascular images of different vertical depths were obtained and the maximun depth was about 600 pumn.Even reaching the depth of 600 pum,tiny capillary vessels as small as 1.9 pum could still be distinguished.The three photon fuorescence lifetimes of the capillaries in some representative images were in accord with that of DCDPP-2TPA nanoparticles in water.A vivid 3D reconstruction was further organized to present a wealth of lifetime information.In the future,the combination strategy of 3PFM and FLIM could be further applied in the brain functional imaging. 展开更多
关键词 Fluorescence lifetime imaging microscopy three-photon fuorescence microscopy aggregation-induced emission in vivo
下载PDF
Click-Formed Polymer Gels with Aggregation-Induced Emission and Dual Stimuli-Responsive Behaviors 被引量:2
6
作者 Sheng-yu Shi Guo-ying Zhang 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2021年第3期365-372,I0001-I0008,I0048,共17页
Stimuli-responsive polymer gels have recently attracted great attention due to their heat/solvent resistance,dimensional stability,and unique sensitivity to external stimuli.In this work,we synthesized thiol-functiona... Stimuli-responsive polymer gels have recently attracted great attention due to their heat/solvent resistance,dimensional stability,and unique sensitivity to external stimuli.In this work,we synthesized thiol-functionalized tetraphenylethylene(TPE)and constructed polymer gels through thiol-ene click reaction.The synthetic process of the polymer gels could be monitored by fluorescence emission of TPE moieties based on aggregation-induced emission mechanism.In addition,due to the dual redox-and acid responsiveness of the polymer gels,in the presence of dithiothreitol and trifluoroacetic acid,fluorescence quenching of the polymer gels can be observed.This stimuli-responsive characteristics endows the polymer gels with potential applications in fluorescent sensing and imaging,cancer diagnosis and selfhealing materials. 展开更多
关键词 Polymer gels Thiol-ene click reaction STIMULI-RESPONSIVE aggregation-induced emission
下载PDF
Aggregation-Induced Emission with Large Redshift in 2,7-Diphenylfluorenone:Reality or Artifact? 被引量:1
7
作者 Xinmao Li Jianxin Guan +2 位作者 Chuanqing Hao Zhihao Yu Junrong Zheng 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2021年第6期867-873,I0004,I0091-I0093,共11页
The luminescence property of 2,7-diphenyl-fluorenone(DPFO)was previously reported to be very unusual with a large aggregationinduced effect associated with a fluorescence redshift of 150 nm.The phenomenon is reexamine... The luminescence property of 2,7-diphenyl-fluorenone(DPFO)was previously reported to be very unusual with a large aggregationinduced effect associated with a fluorescence redshift of 150 nm.The phenomenon is reexamined in this work.It is found that the abnormal observations are caused by the presence of a trace amount of impurity 2,7-diphenyl-fluorene(DPF)in the as-synthesized DPFO.The pure DPFO molecule does have an intense fluorescence(FL)in solid(528 nm),about 4−5 times larger than in its dilute dichloromethane solutions(542 nm),but with a blueshifted rather than redshifted FL wavelength in solid.The enormous FL enhancement and redshifted FL wavelength of the as-synthesized DPFO solid are due to the presence of impurity DPF.The FL of DPF is much stronger than that of DPFO in dilute solutions and it also has shorter FL wavelengths.In a dilute solution of DPFO with a trace amount of DPF(∼1%),the dominant FL peaks are from DPF.Because the electronic absorption peaks of DPF overlaps with DPFO,the electronic energy of DPF can transfer to DPFO.The energy transfer is faster with the increase of concentration because DPF and surrounding DPFO molecules become closer,which quenches the FL of DPF(356 and 372 nm)and enhances the FL of DPFO(542 nm in solution and 528 nm in solid).Therefore,at high concentrations or in solids,only peak at about 542 or 528 nm shows up,and peaks at 356 and 372 nm disappear. 展开更多
关键词 aggregation-induced emission FLUORESCENCE IMPURITY FLUORENONE
下载PDF
Intracellular Self-assembly of TPE-biotin Nanoparticles Enables Aggregation-Induced Emission Fluorescence for Cancer-Targeted Imaging
8
作者 Yi-fei Xu Jin-hui Jiang 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2018年第6期851-856,734,共7页
Fluorogens with aggregation-induced emission (AIE) characteristics have recently been widely applied for studying biological events, and fluorogens with “smart” properties are especially desirable. Herein, we ration... Fluorogens with aggregation-induced emission (AIE) characteristics have recently been widely applied for studying biological events, and fluorogens with “smart” properties are especially desirable. Herein, we rationally designed and synthesized a biotinylated and reduction-activatable probe (Cys(StBu)-Lys(biotin)-Lys(TPE)-CBT (1)) with AIE properties for cancer-targeted imaging. The biotinylated probe 1 can be actively uptaken by the biotin receptor-overexpressing cancer cells, and then “smartly” self-assemble into nanoparticles inside cells and turn the fluorescence “On”. Employing this “smart” strategy, we successfully applied probe 1 for cancer-targeted imaging. We envision that this biotinylated intelligent probe 1 might be further developed for cancer-targeted imaging in routine clinical studies in the near future. 展开更多
关键词 TETRAPHENYLETHYLENE BIOTIN SELF-ASSEMBLY aggregation-induced emission
下载PDF
Review:Aggregation-Induced Emission——A New Tool to Study Polymer Thermodynamics and Kinetics
9
作者 Yifan Ge Xiaoxiao Yu +3 位作者 Junyan Zhang Lan Zhou Yanhua Cheng Meifang Zhu 《Journal of Harbin Institute of Technology(New Series)》 CAS 2022年第6期89-100,共12页
Polymer thermodynamics and kinetics are important components in the basic theory of polymer physics, which provide critical support for polymer processing and molding. As an important thermal analysis technology, diff... Polymer thermodynamics and kinetics are important components in the basic theory of polymer physics, which provide critical support for polymer processing and molding. As an important thermal analysis technology, differential scanning calorimetry(DSC) is a key way to explore the molecular motion of polymer chains, molecular structure, and condensed structure, greatly promoting the development of polymer materials. However, this technique is limited by its ambiguous results, because of inaccurate heat flow measurement and high parameter dependence. As an alternative strategy, aggregation-induced emission luminogens(AIEgens) have been extensively applied in various targets analysis and process monitoring, owing to their weak intermolecular interactions and highly twisted conformation. The optical properties of AIEgens are highly sensitive to the variations of the polymer microenvironment, including characteristic transition, crosslinking reaction, crystallization behavior, and phase separation. In this review, the progress of AIE technology in visualizing polymer molecular motion and structure evolution is summarized, compensating for the limitation of the traditional DSC method to facilitate further research in polymer science and engineering. 展开更多
关键词 aggregation-induced emission THERMODYNAMICS KINETICS polymer physics VISUALIZATION
下载PDF
Aggregation-induced emission (AIE) luminescent materials boosting optical storage into the new era of petabit-level capacity
10
作者 Siwei Zhang Pengfei Zhang Ben Zhong Tang 《Aggregate》 EI CAS 2024年第3期1-3,共3页
The recording of information stands as the most significant milestone in human civilization.Historically,the recording and storage of information have undergone a technological evolution from paintings to carvings,scri... The recording of information stands as the most significant milestone in human civilization.Historically,the recording and storage of information have undergone a technological evolution from paintings to carvings,scribing,and digitization.The invention of optical compact discs(CDs)was one of the major landmarks in digital information technology.Over the past half-century,scientists have endeavored to enhance optical storage capacity by improving both optical systems and optical storage materials,as shown in Scheme 1.In terms of commercial products,the storage capacity has increased from 700 MB(CDs)to 27 GB(Blu-ray discs)by optimizing the optical system based on the same optical storage medium(polycarbonate).To surpass the conventional optical diffraction limit,the optical systems have evolved from traditional lasers to nonlinear two-photon absorption(TPA)and stimulated emission depletion(STED),which has minified the laser spot size from microns to approximately tens of nanometers,marking a remarkable achievement. 展开更多
关键词 aggregation-induced emission optical STORAGE super DISK
原文传递
Novel strategy of multidimensional information encryption via multi-color carbon dots aggregation-induced emission
11
作者 Liu Ding Xilang Jin +6 位作者 Yuchong Gao Shouwang Kang Haiyan Bai Xuehao Ma Taotao Ai Hongwei Zhou Weixing Chen 《Nano Research》 SCIE EI CSCD 2024年第6期5680-5687,共8页
Carbon dots(CDs)with aggregation-induced emission(AIE)have sparked significant interest in multidimensional anti-counterfeiting due to their exceptional fluorescence properties.However,the preparation of AIE CDs with ... Carbon dots(CDs)with aggregation-induced emission(AIE)have sparked significant interest in multidimensional anti-counterfeiting due to their exceptional fluorescence properties.However,the preparation of AIE CDs with multicolor solid-state fluorescence remains a formidable challenge due to its complicated construction.In the present work,a novel class of multicolor AIE CDs(M-CDs)were fabricated using selected precursor(salicylic acid,thiosalicylic acid,and 2,2'-dithiodibenzoic acid),with an eco-friendly,low-cost one-pot solvothermal method.In the dilute organic solution,M-CDs manifested blue emission,but upon aggregation in the presence of water,the red,yellow,green,and blue emissions were displayed due to the AIE effect.Structural analysis,coupled with theoretical calculations,revealed that the increase in the size of sp2 domains would lower the Eg and cause a red-shift emission wavelength.Significantly,the continuous emission of M-CDs from blue to red can be utilized as ink for multimode printing,enabling the creation of a variety of school badges and quick response codes.These findings hold promising implications for multi-information encryption applications. 展开更多
关键词 aggregation-induced emission(AIE) luminescence mechanism multi-color emission information encryption.
原文传递
Superatomic Ag_(58) nanoclusters incorporating a [MS_(4)@Ag_(12)]^(2+)(M = Mo or W) kernel show aggregation-induced emission
12
作者 Jun-Jie Fang Zheng Liu +1 位作者 Yun-Peng Xie Xing Lu 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第10期452-456,共5页
In core-shell silver nanoclusters,the control of core structure presents a more formidable challenge compared to that of the shell structure.Here,we report the successful synthesis and characterization of four distinc... In core-shell silver nanoclusters,the control of core structure presents a more formidable challenge compared to that of the shell structure.Here,we report the successful synthesis and characterization of four distinct silver thiolate nanoclusters[MS_(4)@Ag_(12)@Ag_(46)S_(24)(dppb)_(12)](M=Mo or W),each incorporating a cup-like[MS_(4)@Ag_(12)]^(2+)kernel.These nanoclusters were meticulously prepared using(NH_(4))2Mo S4or(NH_(4))_(2)WS_(4)as both a template and a controlled source of S2-ions.Remarkably,we have observed a unique configuration within these eight-electron superatomic Ag_(58) nanoclusters,where the zerovalent Ag atoms reside exclusively within the inner[MS_(4)@Ag_(12)]^(2+)kernel.This stands in contrast to other superatomic clusters possessing an Ag(0)core.Notably,the introduction of phenyl-containing compounds during the synthesis process induced a transformation in the space group symmetry from C_(2)/c to I 4ˉ.This transformative effect was found to originate from the interplay between adjacent 1,4-bis(diphenylphosphino)butane(dppb)ligands,which facilitated enhanced emission through aggregationinduced intermolecular interactions,specifically C-H···πinteractions.Collectively,our findings contribute substantively to the understanding of the intricate relationship between nanocluster structures and their corresponding properties,shedding light on the crucial roles played by templates and diphosphine ligands in this context. 展开更多
关键词 Superatom Silver nanocluster Template synthesis PHOTOLUMINESCENCE aggregation-induced emission
原文传递
Acceptor-engineering tailored type-Ⅰ photosensitizer with aggregation-induced NIR-II emission for cancer multimodal phototheranostics
13
作者 Jiangao Li Niu Niu +5 位作者 Deliang Wang Xue Liu Yi Qin Lei Wang Ben Zhong Tang Dong Wang 《Science China Chemistry》 SCIE EI CAS CSCD 2024年第8期2647-2660,共14页
Exploration of single molecular species synchronously featured by long excitation/emission wavelength, accurate diagnosis, and effective therapy, remains supremely appealing to implement high-performance cancer photot... Exploration of single molecular species synchronously featured by long excitation/emission wavelength, accurate diagnosis, and effective therapy, remains supremely appealing to implement high-performance cancer phototheranostics. However, those previously established phototheranostic agents are undiversified and stereotyped in terms of structural skeleton, and generally exhibit insufficient phototheranostic outcomes. Herein, we innovatively utilized indanone-condensed thiadiazolo[3,4-g]quinoxaline(ITQ) as electron acceptor to construct novel photosensitizer with second near-infrared(NIR-II) emission. Experimental study and theoretical calculation demonstrated that comparing with the counterparts constituting by widely employed NIR-II building block benzobisthiadiazole(BBTD) and 6,7-diphenylthiadiazoloquinoxaline(DPTQ), ITQ-based photosensitizer(TITQ) showed superior aggregation-induced emission(AIE) characteristics, much stronger type-I reactive oxygen species(ROS) production, and prominent photothermal conversion capacity. Furthermore, TITQ nanoparticles with excellent biocompatibility were capable of effectively accumulating in the tumor site and visualizing tumor through fluorescence-photoacoustic-photothermal trimodal imaging with highly spatiotemporal resolution, and completely eliminating tumor by type-I photodynamic-photothermal therapy. 展开更多
关键词 phototheranostics aggregation-induced emission NIR-Ⅱfluorescence acceptor engineering photodynamic-photothermal therapy
原文传递
Aggregation-Induced Emission(AIE)Active Fluoroboronated Pyridylhydrazinyl Aldehyde Hydrozone Dyes:Synthesis,Crystal Structure and Optical Properties
14
作者 Gong Qingbao LüXiang +4 位作者 Yu Changjiang Li Wanwan Zhao Quansheng Jiao Lijuan Hao Erhong 《有机化学》 SCIE CAS CSCD 北大核心 2024年第8期2545-2553,共9页
A new family of fluoroboronated pyridylhydrazinyl aldehyde hydrozone fluorophores named BOPAHs were developed via a simple one-pot two-step reaction from chloro-2-hydrazinylpyridine and aromatic aldehyde derivatives.T... A new family of fluoroboronated pyridylhydrazinyl aldehyde hydrozone fluorophores named BOPAHs were developed via a simple one-pot two-step reaction from chloro-2-hydrazinylpyridine and aromatic aldehyde derivatives.They were well characterized by NMR,HRMS,and X-ray crystal structures.They exhibit main absorption from 400 nm to 600 nm and emission bands from 500 nm to 700 nm.The absorption/emission bands redshift with increased polarity of solvents indicate a distinct intramolecular charge transfer characteristic,further confirmed by density functional theory(DFT)calculations.These BOPAHs display weak fluorescence in solutions,but they exhibit obvious aggregation-induced emission properties,possibly resulting from weak intermolecular interactions by fixing the molecular conformations in aggregate states. 展开更多
关键词 aggregation-induced emission organoboron dyes organic synthesis optical properties
原文传递
Multi-stimuli-responsive aggregation-induced emission copper iodide cluster
15
作者 Bo Li Yuan-Yuan Liu +4 位作者 Peng Luo Ye-Ru Liu Ying-Jun Chen Kai Li Shuang-Quan Zang 《Science China Chemistry》 SCIE EI CAS CSCD 2024年第4期1193-1197,共5页
Stimuli-responsive luminescent materials have attracted significant attention in the development of smart photoactive materials for both fundamental research and technological applications.In this work,a new copper io... Stimuli-responsive luminescent materials have attracted significant attention in the development of smart photoactive materials for both fundamental research and technological applications.In this work,a new copper iodide cluster(1)with aggregationinduced emission(AIE)characteristic,was obtained combining Cu_(4)I_(4) core with rhodamine B derivative ligand.1 has reversible and distinct multi-stimuli-responsive luminescence for external temperature,volatile organic compound,and mechanical force.Significantly,1 exhibited unusual large blue shift(84 nm)after being ground,which originated from the change of intermolecular interactions.Moreover,1 exhibits high oxygen quenching efficiency for 82.2% at 1 bar.Mechanistic studies showed that the multi-stimuli-responsive luminescence properties of 1 can be attributed to the regulation of cluster-centered luminescence process,metal-to-ligand charge transfer process,halide-to-metal charge transfer luminescence process and aggregationinduced barrier to oxygen process.This work not only reports an AIE copper iodide cluster,but also provides a new strategy to develop multi-stimuli-responsive luminescence materials. 展开更多
关键词 copper iodide cluster aggregation-induced emission multi-stimuli-response
原文传递
Recent advances of aggregation-induced emission in body surface organs
16
作者 Hang Li Tingting Zhang +9 位作者 Yingying Liao Chutong Liu Yisheng He Yongfei Wang Conglei Li Cheng Jiang Chenzhong Li Guanghong Luo Zhongyuan Xiang Yanhong Duo 《Aggregate》 EI CAS 2024年第2期61-81,共21页
The surface organs mainly comprise the superficial layers of various parts of the mammalian body,including the skin,eyes,and ears,which provide solid protection against various threats to the entire body.Damage to sur... The surface organs mainly comprise the superficial layers of various parts of the mammalian body,including the skin,eyes,and ears,which provide solid protection against various threats to the entire body.Damage to surface organs could lead to many serious diseases or even death.Currently,despite significant advancements in this field,there remain numerous enigmas that necessitate expeditious resolution,particularly pertaining to diagnostic and therapeutic objectives.The advancements in nanomedicine have provided a significant impetus for the development of novel approaches in the diagnosis,bioimaging,and therapy of superficial organs.The aggregation-induced emission(AIE)phenomenon,initially observed by Prof.Ben Zhong Tang,stands out due to its contrasting behavior to the aggregationcaused quenching effect.This discovery has significantly revolutionized the field of nanomedicine for surface organs owing to its remarkable advantages.In this review of literature,we aim to provide a comprehensive summary of recent advances of AIE lumenogen(AIEgen)-based nanoplatforms in the fields of detection,diagnosis,imaging,and therapeutics of surface organ-related diseases and discuss their prospects in the domain.It is hoped that this review will help attract researchers’attention toward the utilization of this field for the exploration of a wider range of biomedical and clinical applications. 展开更多
关键词 aggregation-induced emission BIOIMAGING DIAGNOSIS surface organ THERAPY
原文传递
Copper(I)Cluster of Aggregation-Induced Emission and X-Ray Scintillator Characteristic
17
作者 XIONG Jiayu WU Minjian YAO Liao-Yuan 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2024年第5期887-893,共7页
Due to their precise atomic structures,photoluminescent copper nanoclusters(Cu NCs)have promising applications in basic research and technical applications,such as bioimaging,cell labeling,phototherapy,and photoactiva... Due to their precise atomic structures,photoluminescent copper nanoclusters(Cu NCs)have promising applications in basic research and technical applications,such as bioimaging,cell labeling,phototherapy,and photoactivation catalysis.In this work,we report a simple strategy for synthesizing novel CuNCs co-protected by alkynyl and phosphine ligands with the molecular formula[Cu_(7)(PPh_(3))_(10)(PE)_(3)(CH_(3)O)](Cu_(4)@Cu_(3)).Single-crystal X-ray crystallography reveals that the NC core exhibits an open square structure and an overall pyramid shape.Two Cu_(4)@Cu_(3) units are connected through weak interactions to form dimers in crystals,creating a molecular cage that looks like two tightly closed bowls.Cu_(4)@Cu_(3)exhibits dual emission in the visible region.It is also an aggregation-induced emission(AIE)-active luminescent substance,which exhibits strong emission in the visible light region when aggregated.Besides,it has the properties of radioluminescent(RL)and could be a potential scintillator material.This study not only enriches the types of atomically accurate AIE clusters,but also holds significant importance for the development of a new generation of high-performance and environmentally friendly X-ray scintillators. 展开更多
关键词 Copper nanocluster aggregation-induced emission X-Ray scintillator
原文传递
Fluorogenic sensing of amorphous aggregates,amyloid fibers,and chaperone activity via a near-infrared aggregation-induced emission-active probe
18
作者 Wei He Yuanyuan Yang +6 位作者 Yuhui Qian Zhuoyi Chen Yongxin Zheng Wenping Zhao Chenxu Yan Zhiqian Guo Shu Quan 《Aggregate》 EI CAS 2024年第1期309-320,共12页
The presence of protein aggregates in numerous human diseases underscores the significance of detecting these aggregates to comprehend disease mechanisms and develop novel therapeutic approaches for combating these di... The presence of protein aggregates in numerous human diseases underscores the significance of detecting these aggregates to comprehend disease mechanisms and develop novel therapeutic approaches for combating these disorders.Despite the development of various biosensors and fluorescent probes that selectively target amyloid fibers or amorphous aggregates,there is still a lack of tools capable of simultaneously detecting both types of aggregates.Herein,we demonstrate the quantitative discernment of amorphous aggregates by QM-FN-SO3,an aggregationinduced emission(AIE)probe initially designed for detecting amyloid fibers.This probe easily penetrates the membranes of the widely-used prokaryotic model organism Escherichia coli,enabling the visualization of both amorphous aggregates and amyloid fibers through near-infrared fluorescence.Notably,the probe exhibits sensitivity in distinguishing the varying aggregation propensities of proteins,regardless of whether they form amorphous aggregates or amyloid fibers in vivo.These properties contribute to the successful application of the QM-FN-SO3 probe in the subsequent investigation of the antiaggregation activities of two outer membrane protein(OMP)chaperones,both in vitro and in their physiological environment.Overall,our work introduces a near-infrared fluorescent chemical probe that can quantitatively detect amyloid fibers and amorphous aggregates with high sensitivity in vitro and in vivo.Furthermore,it demonstrates the applicability of the probe in chaperone biology and its potential as a high-throughput screening tool for protein aggregation inhibitors and folding factors. 展开更多
关键词 aggregation-induced emission fluorescence molecular chaperone protein aggregation
原文传递
Near-infrared aggregation-induced emission materials:Bibliometric analysis and their application in biomedicalfield
19
作者 Qian He Meiyiming Wang +3 位作者 Li Zhao Bin Xu Wenjing Tian Liyun Zhang 《Aggregate》 EI CAS 2024年第3期78-106,共29页
Aggregation-induced emission(AIE)is an intriguing photophysical phenomenon,where specific materials exhibit a remarkable surge in luminescence when brought together in non-ideal solvents or within a solid matrix.Since ... Aggregation-induced emission(AIE)is an intriguing photophysical phenomenon,where specific materials exhibit a remarkable surge in luminescence when brought together in non-ideal solvents or within a solid matrix.Since the concept of AIE wasfirst introduced in 2001,numerous advanced applications have been gradually explored across various domains,including optics,electronics,energy,and the life sciences.Of particular note is the growing interest in the application of AIE systems with near-infrared(NIR)emissive feature in thefield of biomedicine,encompass-ing detection,imaging,and therapeutic interventions.Notably,bibliometric analysis serves as a valuable tool to provide researchers with a comprehensive understand-ing of research achievements and developmental trends in specificfields,which is crucial for academic research.Herein,we present a general bibliometric overview spanning two decades of NIR-AIE development.With the assistance of core scien-tific databases and various bibliometric software tools,we conducted a systematic analysis of annual publications and citations,the most influential countries/regions,leading authors,journals,and institutions,as well as the hot topics related to NIR applications and forward-looking predictions.Furthermore,the application of AIE with NIR properties in the biomedicalfield is also systematically reviewed. 展开更多
关键词 aggregation-induced emission bibliometric analysis biomedical application NEAR-INFRARED
原文传递
Aggregation-induced Emission Probe for Fluorescence/Photoacoustic Dual-modality Imaging and Photodynamic/Photothermal Treatment
20
作者 CHEN Peiyu ZHANG Guoyang +5 位作者 LI Jiguang MA Lijun ZHOU Jiaying ZHU Mingguang LI Shuo WANG Zhuo 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2024年第2期293-304,共12页
The combination of near-infrared(NIR)fluorescence imaging(FLI)and photoacoustic imaging(PAI)can effectively compensate for each other’s inherent limitations,which can provide reliable and rich information on tumor bi... The combination of near-infrared(NIR)fluorescence imaging(FLI)and photoacoustic imaging(PAI)can effectively compensate for each other’s inherent limitations,which can provide reliable and rich information on tumor biology.Therefore,the development of FL/PA dual-modality imaging probes is beneficial for achieving precision cancer diagnosis and treatment.Herein,we designed an efficient phototherapy agent methoxy bithiophene indene(OTIC),which was based on aggregation-induced emission(AIE)active fluorophores.To improve the water dispersion and enrichment of OTIC at the tumor site,OTIC nanoparticles(OTIC NPs)were prepared by a nanoprecipitation method.The balance between radiation and non-radiation energy dissipation was regulated by the strong donor-acceptor interaction and intramolecular motion.So OTIC NPs exhibited bright NIR fluorescence,photoacoustic signals,efficient generation of reactive oxygen species,and high photothermal conversion efficiency under NIR irradiation.Accurate imaging of the tumor and mice sentinel lymph nodes(SLNs)with OTIC NPs was visualized by NIR FL/PA dual-modal imaging.With the comprehensive imaging information provided by OTIC NPs in vivo,tumors were ablated under laser irradiation,which greatly improved the therapeutic efficacy.OTIC NPs would be possible to realize the precise guidance of FL/PA imaging for tumor treatment in the future clinical application. 展开更多
关键词 aggregation-induced emission Dual-modality imaging Photodynamic/photothermal treatment
原文传递
上一页 1 2 18 下一页 到第
使用帮助 返回顶部