This paper presents an energy management optimization system based on an adaptive functional state model of battery aging for internal combustion engine vehicles(ICEVs).First,the functional characteristics of batterie...This paper presents an energy management optimization system based on an adaptive functional state model of battery aging for internal combustion engine vehicles(ICEVs).First,the functional characteristics of batteries in ICEVs are investigated.Then,an adaptive functional state model is proposed to represent battery aging throughout the entire battery service life.A battery protection scheme is developed,including over-discharge and graded over-current protection to improve battery safety.A model-based energy management strategy is synthesized to comprehensively optimize fuel economy,battery life preservation,and vehicle performance.The performance of the proposed scheme was examined under comprehensive test scenarios based on field and bench tests.The results show that the proposed energy management algorithm can effectively improve fuel economy.展开更多
The time evolution of oxygen plasma treated polystyrene(PS)surfaces was investigated upon storing them in theair under controlled humidity conditions.The methods of water contact angle,X-ray photoelectron spectroscopy...The time evolution of oxygen plasma treated polystyrene(PS)surfaces was investigated upon storing them in theair under controlled humidity conditions.The methods of water contact angle,X-ray photoelectron spectroscopy(XPS),sumfrequency generation(SFG)vibrational spectroscopy,and atomic force microscopy(AFM)were used to infer the surfaceproperties and structure.Chemical groups containing oxygen were formed on the PS surface with the plasma treatment,demonstrated by water contact angle and XPS.The surface polarity decayed markedly on time,as assessed by steady increasein the water contact angle as a function of storage time,from zero to around 60°.The observed decay is interpreted as arisingfrom surface rearrangement processes to burying polar groups away from the uppermost layer of the surfaces,which is incontact with air.On the other hand,XPS results show that the chemical composition in the first 3 nm surface layer isunaffected by the surface aging,and the depth profile of oxygen is essentially the same with time.A possible change of PSsurface roughness was examined by AFM,and it showed that the increase of water contact angle during surface aging couldnot be attributed to surface roughness.Thus,it is concluded that surface aging is attributable to surface reorganization andthe motion of oxygen containing groups is confined within the XPS probing depth.SFG spectroscopy,which is intrinsicallyinterface-specific,was used to detect the chemical structure of PS surface at the molecular level after various aging times.The results are interpreted as follows.During the aging of the plasma treated PS surfaces,the oxygen containing groupsundergo reorientation processes toward the polymer bulk and/or parallel to the surface,while the CH_2 moiety stands up onthe PS surface.Our results indicate that the surface configuration changes do not require large length scale segmentalmotions or migration of macromolecules.Motions that are responsible for surface configuration changes could be relativelysmall rotational motions.The aging behaviors under different relative humidity conditions were shown to be similar from18% to 91%,whereas the kinetics of surface polarity decays were faster in higher relative humidity.Here,the surfacerearrangement of polystyrene films that were previously treated by oxygen plasma and aged,and was investigated in terms ofcontact angle after the water immersion.The contact angles of the water-immersed samples were found to change andapproach the initial values before the immersion asymptotically.展开更多
The magnetic properties of as quenched and annealed Fe 73.5 Ag 1Nb 3Si 13.5 B 9 alloys were investigated. X ray diffraction was used to monitor the structure changes of the samples under different anneali...The magnetic properties of as quenched and annealed Fe 73.5 Ag 1Nb 3Si 13.5 B 9 alloys were investigated. X ray diffraction was used to monitor the structure changes of the samples under different annealing temperatures. It was found that by Cu addition, the crystallization temperature T x1 of Fe Nb Si B alloy is decreased, whereas by Ag addition, the T x1 is increased. A small amount of α Fe and Ag were obtained after the sample was annealed at 500℃ for 1 h. With increasing the annealing temperature, Fe 23 B 6、 Fe 2B、 Fe 3B were separated out and magnetic properties of the samples were impaired quickly. A mostly single nanocrystalline grain of α Fe phase could not be obtained in the annealed samples.展开更多
The formation, structural and electronic properties of silicene oxides(SOs) that result from the oxidation of silicene on Ag(111) surface have been investigated in the framework of density functional theory(DFT)...The formation, structural and electronic properties of silicene oxides(SOs) that result from the oxidation of silicene on Ag(111) surface have been investigated in the framework of density functional theory(DFT).It is found that the honeycomb lattice of silicene on the Ag(111) surface changes after the oxidation. SOs are strongly hybridized with the Ag(111) surface so that they possess metallic band structures. Charge accumulation between SOs and the Ag(111) surface indicates strong chemical bonding, which dramatically affects the electronic properties of SOs. When SOs are peeled off the Ag(111) surface, however, they may become semiconductors.展开更多
基金supported by National Natural Science Foundation of China(Grant No.52002209)Beijing Nova Program,and the State Key Laboratory of Automotive Safety and Energy(Grant No.KFY2210).
文摘This paper presents an energy management optimization system based on an adaptive functional state model of battery aging for internal combustion engine vehicles(ICEVs).First,the functional characteristics of batteries in ICEVs are investigated.Then,an adaptive functional state model is proposed to represent battery aging throughout the entire battery service life.A battery protection scheme is developed,including over-discharge and graded over-current protection to improve battery safety.A model-based energy management strategy is synthesized to comprehensively optimize fuel economy,battery life preservation,and vehicle performance.The performance of the proposed scheme was examined under comprehensive test scenarios based on field and bench tests.The results show that the proposed energy management algorithm can effectively improve fuel economy.
基金This work was funded in part by NSF(DMR-0084301)Eastman Kodak Company.
文摘The time evolution of oxygen plasma treated polystyrene(PS)surfaces was investigated upon storing them in theair under controlled humidity conditions.The methods of water contact angle,X-ray photoelectron spectroscopy(XPS),sumfrequency generation(SFG)vibrational spectroscopy,and atomic force microscopy(AFM)were used to infer the surfaceproperties and structure.Chemical groups containing oxygen were formed on the PS surface with the plasma treatment,demonstrated by water contact angle and XPS.The surface polarity decayed markedly on time,as assessed by steady increasein the water contact angle as a function of storage time,from zero to around 60°.The observed decay is interpreted as arisingfrom surface rearrangement processes to burying polar groups away from the uppermost layer of the surfaces,which is incontact with air.On the other hand,XPS results show that the chemical composition in the first 3 nm surface layer isunaffected by the surface aging,and the depth profile of oxygen is essentially the same with time.A possible change of PSsurface roughness was examined by AFM,and it showed that the increase of water contact angle during surface aging couldnot be attributed to surface roughness.Thus,it is concluded that surface aging is attributable to surface reorganization andthe motion of oxygen containing groups is confined within the XPS probing depth.SFG spectroscopy,which is intrinsicallyinterface-specific,was used to detect the chemical structure of PS surface at the molecular level after various aging times.The results are interpreted as follows.During the aging of the plasma treated PS surfaces,the oxygen containing groupsundergo reorientation processes toward the polymer bulk and/or parallel to the surface,while the CH_2 moiety stands up onthe PS surface.Our results indicate that the surface configuration changes do not require large length scale segmentalmotions or migration of macromolecules.Motions that are responsible for surface configuration changes could be relativelysmall rotational motions.The aging behaviors under different relative humidity conditions were shown to be similar from18% to 91%,whereas the kinetics of surface polarity decays were faster in higher relative humidity.Here,the surfacerearrangement of polystyrene films that were previously treated by oxygen plasma and aged,and was investigated in terms ofcontact angle after the water immersion.The contact angles of the water-immersed samples were found to change andapproach the initial values before the immersion asymptotically.
文摘The magnetic properties of as quenched and annealed Fe 73.5 Ag 1Nb 3Si 13.5 B 9 alloys were investigated. X ray diffraction was used to monitor the structure changes of the samples under different annealing temperatures. It was found that by Cu addition, the crystallization temperature T x1 of Fe Nb Si B alloy is decreased, whereas by Ag addition, the T x1 is increased. A small amount of α Fe and Ag were obtained after the sample was annealed at 500℃ for 1 h. With increasing the annealing temperature, Fe 23 B 6、 Fe 2B、 Fe 3B were separated out and magnetic properties of the samples were impaired quickly. A mostly single nanocrystalline grain of α Fe phase could not be obtained in the annealed samples.
基金supported by the National Basic Research Program of China (Grant No. 2013CB632101)the National Natural Science Foundation of China (Grant Nos. 61222404 and 61474097)the Program of the Ministry of Education of China for Innovative Research Teams in Universities (Grant No. IRT13R54)
文摘The formation, structural and electronic properties of silicene oxides(SOs) that result from the oxidation of silicene on Ag(111) surface have been investigated in the framework of density functional theory(DFT).It is found that the honeycomb lattice of silicene on the Ag(111) surface changes after the oxidation. SOs are strongly hybridized with the Ag(111) surface so that they possess metallic band structures. Charge accumulation between SOs and the Ag(111) surface indicates strong chemical bonding, which dramatically affects the electronic properties of SOs. When SOs are peeled off the Ag(111) surface, however, they may become semiconductors.