期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Controlled Environment Agriculture and Its Ability to Mitigate Food Insecurity
1
作者 Aubrey Lynn Garcia Mya Alexandria Catherine Griffith +4 位作者 George Paul Buss Xiusheng Yang John L. Griffis Sarah Bauer Ankit Kumar Singh 《Agricultural Sciences》 CAS 2023年第2期298-315,共18页
The research objective of this review is to discuss the rationale that led to the development of Controlled Environment Agriculture (CEA) and investigate this agricultural approach as a potential solution to mitigate ... The research objective of this review is to discuss the rationale that led to the development of Controlled Environment Agriculture (CEA) and investigate this agricultural approach as a potential solution to mitigate the increased pressures on food security. It describes the need for urban cultivation systems using controlled environments and how they can be harnessed to address pressures facing food security. The factors that have contributed to the growth of CEAs, education, environmental justice, and the advantages and disadvantages of growing crops in CEAs in urban areas will be discussed. The article reviews global urban cultivation systems using controlled environments, by identifying the technologies needed to establish them. The practice of CEA is being increasingly adopted worldwide and we describe urban agriculture and compare it with traditional growing systems. Indoor farming systems that integrate into existing urban infrastructure such as vertical farming and plant factories using CEAs are discussed. Indoor farming gives urban areas enhanced access to food sources, but the cost is high, however decreasing due to recent technological advances. The current review extends the literature by incorporating recent research on the topic of agriculture in urban areas and food security. This review seeks to provide additional information regarding the viability of CEA in urban areas. 展开更多
关键词 controlled Environment Agriculture Environmental Education Environmental Justice Food Deserts Urban Agriculture
下载PDF
Advances in Measures of Reducing Chemical Pesticides to Control Plant Diseases
2
作者 Yanmin Sun Jinfeng Han +1 位作者 Xiaoli Chen Hui Guo 《Plant Diseases and Pests》 CAS 2021年第5期1-6,16,共7页
In order to provide the technological support for further implementing measures of reducing chemical pesticide to control plant diseases,the research progress on non-chemical pesticide measures to control plant diseas... In order to provide the technological support for further implementing measures of reducing chemical pesticide to control plant diseases,the research progress on non-chemical pesticide measures to control plant diseases are reviewed from the aspects of agricultural control,botanical pesticide control and microbial pesticide control,and the development prospects are proposed,including accelerating innovative research on botani-cal pesticide control such as Chinese herb extracts,and screening microbial pesticides from valuable bio-control bacteria or plant endophyte metabolites for commercial production and utilization. 展开更多
关键词 Reduction of chemical pesticide agricultural control Botanical pesticide Microbial pesticide Plant disease Disease control
下载PDF
The Use and Exchange of Biological Control Agents for Food and Agriculture
3
作者 J.C.van Lenteren M.J.W.Cock +6 位作者 J.Brodeur B.Barratt F.Bigler K.Bolckmans F.Haas P.G.Mason J.R.P.Parra 《中国生物防治学报》 CSCD 北大核心 2010年第S1期123-127,共5页
The report sets out to summarize the past and current situation regarding the practice of biologicalcontrol inrelationtothe use and exchange of genetic resources relevant for BCAs.It considers the twomain categories o... The report sets out to summarize the past and current situation regarding the practice of biologicalcontrol inrelationtothe use and exchange of genetic resources relevant for BCAs.It considers the twomain categories of biological control:classical and augmentative.Allowing access to BCAs for use inanother country imposes no risk of liability to the source country.Local scientific knowledge abouthabitats,fauna andflora,can be 展开更多
关键词 The Use and Exchange of Biological control Agents for Food and Agriculture
下载PDF
The Comparative Performance of Nutrient-Film Technique and Deep-Water Culture Method of Hydroponics for GREENBOX Technology
4
作者 Mya Alexandria Catherine Griffith George Paul Buss +6 位作者 Paige Ann Carroll Xiusheng Yang John L. Griffis Jr. Galen Papkov Sarah Bauer Kathryn Jackson Ankit Kumar Singh 《Agricultural Sciences》 2023年第8期1108-1120,共13页
With the rising pressures on food security, GREENBOX technology was developed as an avenue for fresh leafy vegetable crop production in urban settings. GREENBOX units were designed to be thermally insulated and climat... With the rising pressures on food security, GREENBOX technology was developed as an avenue for fresh leafy vegetable crop production in urban settings. GREENBOX units were designed to be thermally insulated and climate controlled, with an artificial lighting source that utilized soilless cultivation techniques. Previous studies conducted on GREENBOX technology used the Nutrient Film Technique (NFT);however, various hydroponic methods exist, such as the Deep-Water Culture (DWC) method being the most used. The APS Laboratory for Sustainable Food at Florida Gulf Coast University (FGCU) compared the crop growth performance between DWC and NFT systems using GREENBOX technology. The following study monitored environmental conditions and compared productivity and biomass data of Rex Butterhead Lettuce crops between DWC and NFT systems. We assembled two GREENBOX units using commercially available materials and the standard nutrient solution for fertigation. The crops grown in DWC and NFT were in a 4 × 6 configuration. The DWC and NFT systems were used to grow Lettuce Lactuca sativa “Rex Butterhead” over 30 days to full bloom from prepared plugs grown for 14 days. We collected environmental data including Photosynthetic Photon Flux Density (PPFD, μmol/m<sup>2</sup>∙s), Daily Light Integral (DLI, mol/ m<sup>2</sup>∙d), temperature (˚C), relative humidity (%), and Vapor Pressure Deficit (VPD, kPa). We collected lettuce crop growth data, which included wet weight (g), dry weight (g), leaf area (cm<sup>2</sup>), and chlorophyll concentration (μmol/m<sup>2</sup>). We derived data, including the Specific Leaf Area (SLA, cm<sup>2</sup>/g) and biomass productivity (kg/m<sup>2</sup>), from previously collected data. We used descriptive statistics to present the collected data. A paired t-test was performed to understand the differences in biomass and productivity parameters between the DWC and NFT-grown lettuce crops. Both the DWC and NFT-grown crops could grow lettuce crops to harvest weight at full bloom. Observed data demonstrated that the biomass parameters and productivity did not differ significantly between the two hydroponics techniques. Therefore, we believe both hydroponic methods may be similar in growth performance and may be used in future iterations of GREENBOX design and prove suitable for fresh vegetable crop production in urban settings. 展开更多
关键词 controlled Environment Agriculture Food Insecurity GREENBOX HYDROPONICS LETTUCE
下载PDF
The Assessment of Growth Performance of Brassica rapa var. chinensis ‘Li Ren Choi’, Spinacia oleracea ‘Auroch’, Eruca sativa ‘Astro’, and Brassica rapa var. japonica Using GREENBOX Technology
5
作者 George Paul Buss Paige Ann Carroll +6 位作者 Mya Alexandria Catherine Griffith Xiusheng Yang John L. Griffis Jr. Galen Papkov Sarah Bauer Kathryn Jackson Ankit Kumar Singh 《Agricultural Sciences》 2023年第9期1222-1237,共16页
Obtaining nutritious food is becoming increasingly difficult due to the growing urban population and the degradation of soil, water, and air from mechanized and industrialized agricultural techniques. More than half t... Obtaining nutritious food is becoming increasingly difficult due to the growing urban population and the degradation of soil, water, and air from mechanized and industrialized agricultural techniques. More than half the global population resides in urban areas, with not enough surrounding agricultural land to meet food requirements. Food traveling long distances, an average of 1020 miles, has resulted in increased food miles for the average food item in the United States of America, representing wasted resources. The novel GREENBOX technology was invented in response to increasing pressures on food security. Previous studies conducted on GREENBOX technology assessed the technical feasibility of utilizing Lettuce Lactuca sativa ‘Rex Butterhead’. We at the APS Laboratory for Sustainable Food at Florida Gulf Coast University assessed the technical feasibility of growing different leafy green vegetable crops. GREENBOX technology consists of thermally insulated climate-controlled enclosures, an artificial lighting source, a soilless cultivation method (hydroponics), and environmental control modules. We assembled two GREENBOX units to assess the environmental conditions and growth performance of Brassica rapa var. chinensis ‘Li Ren Choi’, Spinach Spinacia oleracea ‘Auroch’, Arugula Eruca sativa ‘Astro’, and Mizuna Brassica Brassica rapa var. japonica. Plugs were cultivated and then transplanted in a randomized manner to the nutrient film technique (NFT) channels, subsequently grown for 30 days to full bloom and ready for harvest. Fertigation was carried out using a standard concentration nutrient solution. Crops were arranged in twelve blocks of four species each. We collected environmental data including daily light integral (DLI, mol/m<sup>2</sup>∙d), temperature (˚C), relative humidity (%), and vapor pressure deficit (VPD, kPa). Collected biomass data included wet weight (g), dry weight (g), leaf area (cm<sup>2</sup>), and chlorophyll concentration (mg/cm<sup>2</sup>). We then derived the Specific Leaf Area (SLA, cm<sup>2</sup>/g). Descriptive statistics were utilized to understand the differences in biomass parameters between the four crops grown. We also compared the performance parameters of our crops with existing peer-reviewed literature and found it superior, if not comparable to commonly found industrial output. We determined that all crops grew to full bloom, demonstrating that GREENBOX technology may be used to grow a variety of different leafy green vegetable crops. 展开更多
关键词 controlled Environment Agriculture Food Insecurity GREENBOX HYDROPONICS LETTUCE
下载PDF
The Comparative Performance of Soil-Based Systems with Hydroponics
6
作者 Paige Ann Carroll George Paul Buss +6 位作者 Mya Alexandria Catherine Griffith Xiusheng Yang John L. Griffis Jr. Galen Papkov Sarah Bauer Kathryn Jackson Ankit Kumar Singh 《Agricultural Sciences》 2023年第8期1087-1097,共11页
Conventional soil-based agriculture is resource-intensive, utilizing large amounts of land and water, thereby placing a strain on Earth’s natural resources. Soil-based agricultural techniques create environmental iss... Conventional soil-based agriculture is resource-intensive, utilizing large amounts of land and water, thereby placing a strain on Earth’s natural resources. Soil-based agricultural techniques create environmental issues such as soil degradation, deforestation, and groundwater pollution from the mass implementation of fertilizers and pesticides. Agricultural crop production using hydroponics has shown promise to be less resource intensive and provide a faster turnaround in crop production. Soilless cultivation using hydroponics promises to relieve some pressure on Earth’s ecosystems and resources by utilizing lesser land and water footprint. The APS Laboratory for Sustainable Food at Florida Gulf Coast University (FGCU) compared the growth of Lettuce Lactuca sativa “Rex Butterhead” crop grown using soil and soilless methods to analyze the growth performance in each setting. Crops grown in the soil-based medium were raised in the FGCU Food Forest, used a mix of soil and potting mix, watered regularly, and followed standard Integrated Pest Management (IPM) practices. Crops grown hydroponically were grown in a thermally insulated grow tent with an artificial lighting source, ventilation, environmental controls, and the Deep-Water Culture (DWC) method. Lettuce plugs were grown for 15 days in controlled environments until two leaves after the cotyledons had developed and were ready for transplant. Plugs were transplanted into a 4 × 6 matrix at the FGCU Food Forest and the DWC growth system. Crops were grown to full bloom and ready for harvest in the soil (60 days) and soilless (30 days) based setups. We collected crop growth data, including wet weight (g), dry weight (g), leaf area (cm<sup>2</sup>), and chlorophyll concentration (μmol/m<sup>2</sup>). From the collected data, we derived the Specific Leaf Area (SLA, cm<sup>2</sup>/g) and biomass productivity (kg/m<sup>2</sup>). Descriptive statistics were used to describe the collected and derived data. We investigated the slopes of regression lines for each growth curve which derived the differences in biomass and productivity parameters between lettuce grown using soil and hydroponics. Both growing methods can grow lettuce crops to full bloom and to adequate harvest weight. The biomass parameters and productivity differ significantly between the growing methods. The lettuce crops grown using hydroponics increase in wet weight statistically and significantly faster than those grown in soil (p < 0.0001). Therefore, we determined that a hydroponic method of crop production may provide better crop output and biomass indicators measured than soil-based growth. 展开更多
关键词 controlled Environment Agriculture HYDROPONICS LETTUCE Soilless Agriculture Urban Agriculture
下载PDF
DeCASA in AgriVerse: Parallel Agriculture for Smart Villages in Metaverses 被引量:6
7
作者 Xiujuan Wang Mengzhen Kang +2 位作者 Hequan Sun Philippe de Reffye Fei-Yue Wang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2022年第12期2055-2062,共8页
The demand for food is tremendously increasing with the growth of the world population,which necessitates the development of sustainable agriculture under the impact of various factors,such as climate change.To fulfil... The demand for food is tremendously increasing with the growth of the world population,which necessitates the development of sustainable agriculture under the impact of various factors,such as climate change.To fulfill this challenge,we are developing Metaverses for agriculture,referred to as Agri Verse,under our Decentralized Complex Adaptive Systems in Agriculture(De CASA)project,which is a digital world of smart villages created alongside the development of Decentralized Sciences(De Sci)and Decentralized Autonomous Organizations(DAO)for Cyber-Physical-Social Systems(CPSSs).Additionally,we provide the architectures,operating modes and major applications of De CASA in AgriVerse.For achieving sustainable agriculture,a foundation model based on ACP theory and federated intelligence is envisaged.Finally,we discuss the challenges and opportunities. 展开更多
关键词 Parallel Agriculture Management and control AgriVerse Agriculture CPSS ACP DAO-Based Platform Precision Agriculture
下载PDF
Effect of combined light-emitting diodeson the accumulation of glucosinolates in Brassica microgreens
8
作者 Oday Alrifai Lili Mats +3 位作者 Ronghua Liu Xiuming Hao Massimo F.Marcone Rong Tsao 《Food Production, Processing and Nutrition》 2021年第1期365-380,共16页
As of recent,microgreen vegetable production in controlled environments are being investigated for their bioactive properties.Phytochemicals like glucosinolates(GLS)are highly sensitive to varying spectral qualities o... As of recent,microgreen vegetable production in controlled environments are being investigated for their bioactive properties.Phytochemicals like glucosinolates(GLS)are highly sensitive to varying spectral qualities of light,especially in leafy greens of Brassica where the responses are highly species-dependent.The accumulation of bioactive GLS were studied under 8 different treatments of combined amber(590 nm),blue(455 nm),and red(655 nm)light-emitting diodes(rbaLED).A semi-targeted metabolomics approach was carried out to profile common intact-GLS in microgreen extracts of Brassica by means of LC-HRMS/MS.Thirteen GLS were identified,among them were 8 aliphatic,4 indolic and 1 aromatic GLS.Mass spectrometry data showed sinigrin had the highest average concentration and was highest in B.juncea,progoitrin was highest in B.rapa and glucobrassicin in R.sativus.The individual and total GLS in the microgreens of the present study were largely different under rbaLED;B.rapa microgreens contained the highest profile of total GLS,followed by R.sativus and B.juncea.Sinigrin was increased and gluconasturtiin was decreased under rbaLED lighting in most microgreens,glucoalyssin uniquely increased in R.sativus and decreased in B.rapa and glucobrassicin uniquely decreased in both B.rapa and B.juncea.The present study showed that rbaLED contributed to the altered profiles of GLS resulting in their significant modulation.Optimizing the light spectrum for improved GLS biosynthesis could lead to production of microgreens with targeted health-promoting properties. 展开更多
关键词 Amber light GLUCOSINOLATES Light-emitting diodes Microgreens controlled environment agriculture PHYTOCHEMICAL controlled environment systems
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部