This study aimed to investigate the pollution characteristics, source apportionment, and health risks associated with trace metal(loid)s(TMs) in the major agricultural producing areas in Chongqing, China. We analyzed ...This study aimed to investigate the pollution characteristics, source apportionment, and health risks associated with trace metal(loid)s(TMs) in the major agricultural producing areas in Chongqing, China. We analyzed the source apportionment and assessed the health risk of TMs in agricultural soils by using positive matrix factorization(PMF) model and health risk assessment(HRA) model based on Monte Carlo simulation. Meanwhile, we combined PMF and HRA models to explore the health risks of TMs in agricultural soils by different pollution sources to determine the priority control factors. Results showed that the average contents of cadmium(Cd), arsenic (As), lead(Pb), chromium(Cr), copper(Cu), nickel(Ni), and zinc(Zn) in the soil were found to be 0.26, 5.93, 27.14, 61.32, 23.81, 32.45, and 78.65 mg/kg, respectively. Spatial analysis and source apportionment analysis revealed that urban and industrial sources, agricultural sources, and natural sources accounted for 33.0%, 27.7%, and 39.3% of TM accumulation in the soil, respectively. In the HRA model based on Monte Carlo simulation, noncarcinogenic risks were deemed negligible(hazard index <1), the carcinogenic risks were at acceptable level(10^(-6)<total carcinogenic risk ≤ 10^(-4)), with higher risks observed for children compared to adults. The relationship between TMs, their sources, and health risks indicated that urban and industrial sources were primarily associated with As, contributing to 75.1% of carcinogenic risks and 55.7% of non-carcinogenic risks, making them the primary control factors. Meanwhile, agricultural sources were primarily linked to Cd and Pb, contributing to 13.1% of carcinogenic risks and 21.8% of non-carcinogenic risks, designating them as secondary control factors.展开更多
The upland agricultural soils in North China are distributed north of a line between the Kunlun Mountains, the Qinling Mountains and the Huaihe River. They occur in arid, semi-arid and semi-humid regions and crop prod...The upland agricultural soils in North China are distributed north of a line between the Kunlun Mountains, the Qinling Mountains and the Huaihe River. They occur in arid, semi-arid and semi-humid regions and crop production often depends on rain-fed or irrigation to supplement rainfall. This paper summarizes the characteristics of gross nitrogen(N) transformation, the fate of N fertilizer and soil N as well as the N loss pathway, and makes suggestions for proper N management in the region. The soils of the region are characterized by strong N mineralization and nitrification, and weak immobilization and denitrification ability, which lead to the production and accumulation of nitrate in the soil profile. Large amounts of accumulated nitrate have been observed in the vadose-zone in soils due to excess N fertilization in the past three decades, and this nitrate is subject to occasional leaching which leads to groundwater nitrate contamination. Under farmer's conventional high N fertilization practice in the winter wheat-summer maize rotation system(N application rate was approximately 600 kg ha–1 yr–1), crop N uptake, soil residual N, NH_3 volatilization, NO_3~– leaching, and denitrification loss accounted for around 27, 30, 23, 18 and 2% of the applied fertilizer N, respectively. NH_3 volatilization and NO_3~– leaching were the most important N loss pathways while soil residual N was an important fate of N fertilizer for replenishing soil N depletion from crop production. The upland agricultural soils in North China are a large source of N_2O and total emissions in this region make up a large proportion(approximately 54%) of Chinese cropland N_2O emissions. The “non-coupled strong ammonia oxidation” process is an important mechanism of N_2O production. Slowing down ammonia oxidation after ammonium-N fertilizer or urea application and avoiding transient high soil NH4+ concentrations are key measures for reducing N_2O emissions in this region. Further N management should aim to minimize N losses from crop and livestock production, and increase the recycling of manure and straw back to cropland. We also recommend adoption of the 4 R(Right soure, Right rate, Right time, Right place) fertilization techniques to realize proper N fertilizer management, and improving application methods or modifying fertilizer types to reduce NH_3 volatilization, improving water management to reduce NO_3~– leaching, and controlling the strong ammonia oxidation process to abate N_2O emission. Future research should focus on the study of the trade-off effects among different N loss pathways under different N application methods or fertilizer products.展开更多
Selected persistent organochlorine pesticides (OCPs), including 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane (DDT) and its principal metabolites 1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene (DDE) and 1,1-dichloro-2,2...Selected persistent organochlorine pesticides (OCPs), including 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane (DDT) and its principal metabolites 1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene (DDE) and 1,1-dichloro-2,2-bis(p-chlorophenyl)e- thane (DDD), hexachlorocyclohexane (HCH) and its isomers (α-,β-, γ-, and δ-HCH), hexachlorobenzene (HCB), endo- sulfan, dieldrin, and endrin were quantified to determine current levels of organochlorine pesticides, to assess the eco- toxicological potential, and to distin…展开更多
Xuzhou City is an important base for coal production and coal-fired power. To evaluate selenium contamination in this area, we sampled agricultural soil, soil profile, irrigation water, bedrock, coal, fly ash, paddy r...Xuzhou City is an important base for coal production and coal-fired power. To evaluate selenium contamination in this area, we sampled agricultural soil, soil profile, irrigation water, bedrock, coal, fly ash, paddy rice, and vegetables from the north of Xuzhou City, and determined their selenium contents. The background level of selenium in the soil profile was 0.08 mg/kg. The selenium concentrations in agricultural soils and irrigation water were in the range of 0.21-4.08 mg/kg and 0.002-0.29 mg/L, respectively. Soils with high selenium content were located closely to coalmines and power plants. The average selenium concentrations in coal and coal fly ash were 5.46 and 2.81 mg/kg, respectively. In contrast, the concentrations of selenium in bedrock and in the soil profile were very low. These results imply that the high selenium level in agricultural soils is mainly caused by anthropogenic activities, rather than by parent material. The arithmetic mean of selenium concentration in paddy rice was 0.116 mg/kg, and in cabbage was 0.05 mg/kg. The selenium concentration in rice was positively correlated with total selenium concentration in soil, suggesting that selenium in soil is readily transferred into the crops. Furthermore, the estimated dietary intake (88.8 μg) of selenium from paddy rice and cabbage exceeds the recommended dietary allowance (55 μg). Therefore, there is a potential health risk from consumption of local staple food in the study area.展开更多
The eutrophication problem has drawn attention to nutrient leaching from agricultural soils, and an understanding of spatial and temporal variability is needed to develop decision-making tools. Thus, eleven sites were...The eutrophication problem has drawn attention to nutrient leaching from agricultural soils, and an understanding of spatial and temporal variability is needed to develop decision-making tools. Thus, eleven sites were selected to monitor, over a two-year period, spatial and temporal variation of runoff discharge and various forms of N in surface runoff in sandy agricultural soils. Factors influencing the variation of runoff discharge and various forms of N in surface runoff were analyzed. Variation of annual rainfall was small among 11 sites, especially between 2001 and 2002. However, variation of annual discharge was significant among the sites. The results suggest that rainfall patterns and land use had significant effect on discharge. The concentrations of total N, total kjeldahl N (TKN), organic matter-associated N (OM-N), NO3- -N, and NHn+-N in the runoff ranged widely from 0.25 to 54.1, 0.15 to 20.3, 0.00 to 14.6, 0.00 to 45.3, and 0.00 to 19.7 mg/L, respectively. Spatial and temporal variations in the N concentration and runoff discharge were noted among the different sites. Annual loads of N in the runoff varied widely among monitoring sites and depend mainly on runoff discharge. High loads of total N, OM-N, NO3--N, and NHn+-N in the runoff either in citrus groves or on vegetable farms occurred from June to October for each year, which coincided with the rainy season in the region. This study found that N in surface runoff was related to rainfall intensity, soil N level, and fertilizer use.展开更多
An enclosed chamber technique was used to measure N 2O emissions from intensively agricultural soils of the North China Plain during the periods of 1995—1996 and 1997—1998, to reflect distinct components of winter ...An enclosed chamber technique was used to measure N 2O emissions from intensively agricultural soils of the North China Plain during the periods of 1995—1996 and 1997—1998, to reflect distinct components of winter wheat and summer maize growing seasons. The results showed that the continuous application of fertilizer in agricultural soils increased N\-2O emissions by a factor of 24.1—28.1, the calculated annual chemical N fertilizer\|transformed N\-2O\|N emissions was 0.67%. Our results indicated that the application of organic manure also had a significant influence on soil N 2O emissions, which combined with the use of chemical N increased about 20% in a year. It was calculated that there were about 0.11% N of organic manure transformed as N 2O N. Annual mean N 2O emission from our study area of fertilized soils was estimated to be 57.1 μgN 2O/(m 2·h). A weak correlation was also found between N 2O emissions and soil available nitrogen content NH + 4.展开更多
The contributions of persistent organic pollutants (POPs) from the subtropical regions of China to pollution of the global environment have been paid great attention; however, little is known about the state of POPs...The contributions of persistent organic pollutants (POPs) from the subtropical regions of China to pollution of the global environment have been paid great attention; however, little is known about the state of POPs in agricultural ecosystems within these regions of China. This study primarily revealed the state of the contamination and distribution of polycyclic aromatic hydrocarbons (PAH) in agricultural soils in the subtropical regions. 115 surface soils (0-20 cm) were sampled in the breadbaskets of these regions. The concentrations and types of PAH were determined using gas chromatography linked to mass spectrometry (GC-MS). The total PAH concentrations ranged from 22.1 to 1 256.9 ng g^-1 with a mean of 318.2 ± 148.2 ng g^-1. In general terms, the current PAH concentrations were lower than most PAH levels reported in a number of investigations from different countries and regions. PAH isomer ratios indicated that pyrolytic origins, such as fossil fuel combustion related to vehicle tail gas and industrial emissions, were the dominant sources of PAH in the southern subtropical areas of China. Although PAH concentrations decreased with decreasing pollution, population, and traffic density, to a great extent PAH compositions were similar throughout subtropical soils, with naphthalene, phenanthrene, fluoranthene, and benzo(b)fluoranthene being dominant.展开更多
Due to its complicated matrix effects, rapid quantitative analysis of chromium in agricultural soils is difficult without the concentration gradient samples by laser-induced breakdown spectroscopy. To improve the anal...Due to its complicated matrix effects, rapid quantitative analysis of chromium in agricultural soils is difficult without the concentration gradient samples by laser-induced breakdown spectroscopy. To improve the analysis speed and accuracy, two calibration models are built with the support vector machine method: one considering the whole spectra and the other based on the segmental spectra input. Considering the results of the multiple linear regression analysis, three segmental spectra are chosen as the input variables of the support vector regression (SVR) model. Compared with the results of the SVR model with the whole spectra input, the relative standard error of prediction is reduced from 3.18% to 2.61% and the running time is saved due to the decrease in the number of input variables, showing the robustness in rapid soil analysis without the concentration gradient samples.展开更多
Although numerous studies about the nature and turnover of soil organic matter(SOM) in light and heavy fractions( LFOM and HFQM, respectively) have been made, little information is available in relation to the rel...Although numerous studies about the nature and turnover of soil organic matter(SOM) in light and heavy fractions( LFOM and HFQM, respectively) have been made, little information is available in relation to the relationship between LFQM and HFOM, and no attempts have been made to quantify a general relationship between LFQM and HFQM for agricultural soils under field condition. Qur hypothesis is there may be an inherent relationship between LFQM and HFQM for agricultural soils under certain unaltered management practices for a long period, to this end, we therefore studied typically soils taken from different parts in China by using a simple density fractionation procedure. The results indicated that LFQM was positively correlated with LFOM/HFOM ratio for three typical soils. This information will be of particular use not only in deepening our understanding of the dynamics of SQM fractions but also in evaluating the potential of agricultural soils to sequestrate C under different management practices in a long term.展开更多
Soils can often be contaminated simultaneously by more than one heavy metal. The sorption-desorption behavior of a metal in a soil will be affected by the presence of other metals. Therefore, selective retention and c...Soils can often be contaminated simultaneously by more than one heavy metal. The sorption-desorption behavior of a metal in a soil will be affected by the presence of other metals. Therefore, selective retention and competitive adsorption of the soils to heavy metals can affect their availability and movement through the soils. In this study, the simultaneous competitive adsorption of four heavy metals (Cd, Cu, Hg, and Pb) on ten agricultural soils collected from the Changjiang and Zhujiang deltas, China was assessed. The results showed that the competition affected the behavior of heavy metal cations in such a way that the soils adsorbed less Cd and Hg, and more Pb and Cu with increasing total metal concentrations, regardless of the molar concen- tration applied. As the applied concentrations increased, Pb and Cu adsorption increased, while Cd and Hg adsorption decreased. The adsorption sequence most found was Pb>Cu>Hg>Cd. The maximum adsorption capacity for the heavy metal cations was calculated, and affected markedly by soil properties. The results suggest that Hg and Cd have higher mobility associated to the lower adsorption and that Pb and Cu present the opposite behavior. Significant correlations were found between the maximum adsorption capacity of the metals and pH value and exchangeable acid, suggesting that soil pH and exchangeable acid were key factors controlling the solubility and mobility of the metals in the agricultural soils.展开更多
The objective of this study is to assess the level of metal contamination of sediments and agricultural soils in the Ity-Floleu zone. The concentrations of trace elements (Fe, Mn, As, Cd, Cr, Cu, Hg, Ni, Pb and Zn) we...The objective of this study is to assess the level of metal contamination of sediments and agricultural soils in the Ity-Floleu zone. The concentrations of trace elements (Fe, Mn, As, Cd, Cr, Cu, Hg, Ni, Pb and Zn) were measured in different seasons over two successive years. The sediment pollution index made it possible to note that the sediments and agricultural soils of the various stations studied are highly polluted in all seasons. The calculation of the geoaccumulation index indicates that surface water sediments most often experience extreme or moderate pollution in As, Cd, Cu, Hg and Zn in the dry or rainy season except in Pb in some cases. We observed that the sediments of the Cavally river present a serious pollution due to extreme anthropic activities carried out along the river. Over the entire region, the results of the potential ecological risk index (RI) indicate that all the sediments and agricultural soils analysed present a moderate ecological risk in terms of Pb and Zn in certain cases and an ecological risk is observed low bound to other metals in all seasons. This metallic pollution generated by human activities in this region can have consequences for the environment and biodiversity.展开更多
This work focuses on the analysis of the chemical composition of soils dedicated to agriculture in order to assess the impacts of manganese mining activity in the city of Moanda in South-East Gabon. The result of the ...This work focuses on the analysis of the chemical composition of soils dedicated to agriculture in order to assess the impacts of manganese mining activity in the city of Moanda in South-East Gabon. The result of the analysis obtained using wavelength dispersive X-ray fluorescence revealed the presence of twenty-seven elements in the seventeen soil samples collected namely: Na, K, Rb, Mg, Ca, Sr, Ba, Ti, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Cr, Mn, Al, O, C, P, S, Si, I, Ac and Th. Iron (Fe), aluminum (Al) and manganese (Mn) were respectively higher. The practice of agriculture near mining sites is not without risks for the quality of agricultural products and the health of the population.展开更多
Heavy metal concentrations in agricultural soils of Zhejiang Province were monitored to indicate the status of heavy metal contamination and assess environmental quality of agricultural soils. A total of 908 soil samp...Heavy metal concentrations in agricultural soils of Zhejiang Province were monitored to indicate the status of heavy metal contamination and assess environmental quality of agricultural soils. A total of 908 soil samples were collected from 38 counties in Zbejiang Province and eight heavy metal (Cd, Cr, Pb, Hg, Cu, Zn, Ni and As) concentrations had been evaluated in agricultural soil. It was found 775 samples were unpolluted and 133 samples were slightly polluted and more respectively, that is approximately 14.65% agricultural soil samples had the heavy metal concentration above the threshold level in this province by means of Nemerow's synthetical pollution index method according to the second grade of Standards for Soil Environmental Quality of China (GB15618- 1995). Contamination of Cd was the highest, followed by Ni, As and Zn were lower correspondingly. Moreover, Inverse Distance Weighted (IDW) interpolation method was used to make an assessment map of soil environmental quality based on the Nemerow's pollution index and the soil environmental quality was categorized into five grades. Moreover, ten indices were calculated as input parameters for principal component analysis (PCA) and the principal components (PCs) were created to compare environmental quality of different soils and regions. The results revealed that environmental quality of tea soils was better than that of paddy soils, vegetable soils and fruit soils. This study indicated that GIS combined with multivariate statistical approaches proved to be effective and powerful tool in the mapping of soil contamination distribution and the assessment of soil environmental quality on provincial scale, which is beneficial to environmental protection and management decision-making by local government.展开更多
In industry-oriented peri-urban areas, the heavy metal accumulation in soils caused by industrialization has become a potential threat. The top soil samples from 27 paddy fields and 75 vegetable fields were collected ...In industry-oriented peri-urban areas, the heavy metal accumulation in soils caused by industrialization has become a potential threat. The top soil samples from 27 paddy fields and 75 vegetable fields were collected from a typical industry- based peri-urban area of about 8 km^2 in Wuxi, China, to study the accumulation and distribution of As, Hg, Cu, Zn, Pb, Cr, and Cd in comparison with heavy metal contents in soils near developed industrial sites (Guangzhou, China; Wallsend Burn of Tyneside, UK; and Osnabrück, Germany). Kriging interpolation was used to determine the metals, spatial distribution. The results showed that most soils, compared to the background values, contained elevated contents of As, Hg, Cu, Zn, and Pb with some having elevated contents of Cd and Cr. Except for less than 10% of the soil samples of Cu, Zn and Cd contents, these heavy metal contents were lower than the soil threshold levels of the Grade Ⅱ criteria for the Chinese environmental quality standard. Probably, because of the scattered distribution and diversity of industries in the study area, spatial distributions of these heavy metals from Kriging interpolation indicated little similarity. Nevertheless, when compared with other areas in the Taihu Lake region, mean contents of Cu, Zn, Pb, and Cd were relatively high in the Wuxi peri-urban area. Additionally, compared to soils in agricultural areas around Guangzhou, Osnabrück, or Wallsend Burn, contents of most heavy metals in soils from this area were lower.展开更多
A total of 118 of agricultural soil and 43 of vegetable samples were collected from Dongguan City, Guangdong, China. The spatial distribution, sources, accumulation characteristics and potential risk of heavy metals i...A total of 118 of agricultural soil and 43 of vegetable samples were collected from Dongguan City, Guangdong, China. The spatial distribution, sources, accumulation characteristics and potential risk of heavy metals in the agricultural soils and vegetables were depicted in details by three different approaches, including total contents of eight metal elements in soils and vegetables, GIS maps and multivariate analysis of heavy metals in soils in the study. The results show that there are higher accumulation of heavy metals such as Cu, Zn, Ni, Pb, Cd and Hg in agricultural soils, and the contents of Pb (65.38 mg kg^-1) and Hg (0.24 mg kg^-1) are 1.82 and 2.82 times of the background contents of the corresponding heavy metals in soils of Guangdong Province, respectively. There are about 3.4% of Cu, 5.9% of Ni, 1.7% of Cd and 28% of Hg in all collected soil samples from all investigated sites which have overran the contents for heavy metals of the China Environmental Quality Standard for Soils (GB15618-1995, Grade Ⅱ). The pollution characteristics of multi-metals in soils are mainly reflected by Hg. There are different sources to eight metal elements in soils, Cu, Zn, Ni Cr and As are predominantly derived from parent materials, and Pb, Hg and Cd are affected by anthropogenic activities. The spatial distribution shows that the Cu, Zn, Ni, Cr, Pb, As and Hg contents of agricultural soils are high in the west and low in the east, and Cd contents are high in the northwest, southeast and low in the southwest in Dongguan. The ratios of vegetable samples which Ni, Pb and As concentrations higher than the Maximum Levels of Contaminants in Foods (GB2762-2005) are 4.7%, 16.3% and 48.8%, respectively. The order of bio-concentration factors (BCF) of heavy metals in vegetables is Cd 〉 Zn 〉 Cu 〉 As 〉 Ni 〉 Hg 〉 Cr 〉 Pb. It is necessary to focus on potential risk of heavy metals for food safety and human's health from agricultural soils and vegetables in Dongguan City, Guangdong Province.展开更多
A total of 198 agricultural soil samples were collected from Zhangjiagang and Changshu in Southern Jiangsu for analysis of 13 polychlorinated biphenyls (PCBs) in order to assess the levels of pollution, sources, are...A total of 198 agricultural soil samples were collected from Zhangjiagang and Changshu in Southern Jiangsu for analysis of 13 polychlorinated biphenyls (PCBs) in order to assess the levels of pollution, sources, area distribution, and potential risk for the environment. All methods were rigorously tested and an adequate quality control was ensured. Only one site had no PCBs residues, and the highest total PCBs concentration in the surface soils was 32.83 ng/g. The average concentration in all the soil samples was 4.13 ng/g, signaling low-level pollution. Tetra-, penta-, and hexa-chlorinated biphenyls were dominant species in soil samples, accounting for more than 75% of ∑PCBs in the soil samples. PCB118 was the most abundant congener in all the samples. The PCB118 was about 20% of ∑PCBs. The soil organic matter content showed only a weak correlation with the levels of all PCB congeners, in which a better correlation was noted for the more volatile lighter PCB congeners than for the heavier homologues. To a certain extent, the sources and land use seemed to influence the levels of PCBs.展开更多
The environmental quality of heavy metals (Pb, Cd, Cr, As, Hg) in agricultural surface soil of Chongming Island was assessed by national, local and professional standards based on a large scale investigation, in whi...The environmental quality of heavy metals (Pb, Cd, Cr, As, Hg) in agricultural surface soil of Chongming Island was assessed by national, local and professional standards based on a large scale investigation, in which 28 samples from vegetable plots, 65 samples from paddy fields and 9 samples from watermelon fields were collected from whole island area. Results showed that the average concentration of Pb, Cd, Cr, As and Hg was 21.6 mg.kg^-l,0.176 mg.kg^-1, 69.4 mg.kg^-1, 9.209 mg.kg^-1 and 0.128 mg.kg^-1, respectively. Compared with the background value of Shanghai City soil, except for Pb and Cr, all the other heavy metals average concentrations in Chongming Island agricultural surface soil exceeded their corresponding natural-background values. The concentrations of Cd, As and Hg were 33.0%, 1.2% and 26.3% higher than the background value of Shanghai City, respectively. In addition, inverse distance interpolation (IDW) tool of GIS was also applied to study the spatial variation of heavy metals. The results indicated that most of agricultural soil quality was good, and the ratio of ecological, good soil, certified soil and disqualified soil were 1.26%, 97.1%, 1.47% and 0.12%, respectively. About 10.1%, 85.7%, 27.0%, 55.4% and 55.2% soil samples exceeded the Pb, Cd, Cr, As and Hg background value of Shanghai City, respectively. Among these three land use type soils, vegetable soil was most seriously polluted by heavy metals, which is probably related to the over-application of pesticides. The annual deposition fluxes of Pb, Cd, As and Hg were 7736μg·m^-2·a^-1, 208μg·m^-2·a^-1, 2238μg·m^-2·a^-1 and 52.8 μg·m^-2·a^-1 respectively. Crop straw burning was the important source of heavy metals of atmospheric deposition, and atmospheric deposition contributed a lot to heavy metals in agricultural soil in Chongming Island.展开更多
Distribution and speciation of heavy metals of agricultural soils(85 surface soil samples and 4 soil profiles) in Dongguan were investigated, while total Cr, Cu, Ni, Pb, Zn(abbreviated as Cr, Cu, Ni, Pb, Zn) and avail...Distribution and speciation of heavy metals of agricultural soils(85 surface soil samples and 4 soil profiles) in Dongguan were investigated, while total Cr, Cu, Ni, Pb, Zn(abbreviated as Cr, Cu, Ni, Pb, Zn) and available Cu, Zn(Av-Cu, Av-Zn) were analyzed by a flame absorption spectrophotometer(AAS), and total Cd(Cd) was analyzed using graphite furnace AAS. The content of Cd, Cu and Ni was partially much more than the second grade of GB15618-1995 even though the mean contents of all heavy metal were less than the threshold value of the second grade and only the mean content of Pb was more than the value of national background. Results of descriptive statistic showed that the mean content of heavy metals should depend on land utilization and spatial location at some extent. The heavy metal contents were higher in the Southwest and Northwest than in the Central. In addition, the mean contents of Zn and Pb in Dongguan paddy soils were significantly higher than those of Pearl River Delta(PRD) and Taihu Lake region(TLR). Correlation analyses indicated that there existed significant correlation between Cr and Ni in orchard soils, and among Zn, Cd and Cu, between Av-Cu and Cu, between Av-Zn and Cr, Ni, pH value in vegetable soils, and a weak relationship between Cd, Cu and Pb, between Av-Zn and Zn. Principal component analyses(PCA) showed that the order of importance should be Zn>Pb>Cr>Ni>Cu.展开更多
[Objective] This study was conducted to provide a scientific theoretical ba- sis for pollution forewarning and agricultural planning. [Method] 15 PAHs were stud- ied for pollution characteristics, source analysis and ...[Objective] This study was conducted to provide a scientific theoretical ba- sis for pollution forewarning and agricultural planning. [Method] 15 PAHs were stud- ied for pollution characteristics, source analysis and ecological risk assessment at 60 sites in Hohhot farmland. [Result] The results showed that the total contents of 15 PAHs (:EPAHs) in 60 sampling points of Hohhot farmland were in the range of 114-948 ~g/kg, with an average content of 338 pg/kg. According to soil PAH as- sessment standards, more than 70% of soil in Hohhot City was lightly polluted, and there were no heavily-polluted points. The soil of the area was mainly polluted by PAHs with high molecular weights, which accounted for 74% of the total content. The soil in suburban farmland of Hohhot suffered from the heaviest pollution. Quan- titative analysis showed that PAH pollution in Hohhot farmland was mainly from combustion of coal, coke and timber and automotive exhaust emission. [Conclusion] Ecological effect interval method and method of equivalents equivalent to benzo (a) pyrene toxicity benzo [a] pyrene both proved that there is certain potential ecological risk for soil of Hohhot farmland, and PAHs with high molecular weights such as benzo (a) pyrene and dibenzo [a, h] anthracene are main potential pollutants with ecological risk.展开更多
To avoid soil degradation,adapt to climate change and comply with the Sustainable Development goals 2030(UN General Assembly),establishing the quality/fertility of the agricultural soils of the Mediterranean region an...To avoid soil degradation,adapt to climate change and comply with the Sustainable Development goals 2030(UN General Assembly),establishing the quality/fertility of the agricultural soils of the Mediterranean region and evaluate how these evolve with time is mandatory.This enables adequate management practices to be implemented.The Mediterranean calcareous region has received little attention in this sense,in spite its soil particularities.So,24 different representative calcareous agricultural soils of the Mediterranean region,including the main management strategies of agricultural soils(rainfed and irrigated),were sampled from the island of Mallorca;and their physical,chemical and biological properties determined.The values obtained for most of the soil characteristics allowed to establish an initial approach to the reference values for the type of calcareous agricultural soils considered,and to clearly distinguish the effect of rainfed or irrigation management practices on soils properties and dynamics.Some enzyme activities were not stimulated by the irrigation conditions assayed or they were only in dry conditions,suggesting optimum enzyme activities could be obtained when alternating dry and humid soil conditions.Soil organic carbon,calcium carbonate and active lime revealed of significant importance in the collection of soils.Finally,the results obtained clearly indicate the heterogeneity of the region and its implications on the different soil characteristics.Therefore,this study could serve as a starting point to adequately establish the quality(fertility)for Mediterranean calcareous agricultural soils and their reference values by conducting further research in this region and including more type of soils.展开更多
基金supported by Project of Chongqing Science and Technology Bureau (cstc2022jxjl0005)。
文摘This study aimed to investigate the pollution characteristics, source apportionment, and health risks associated with trace metal(loid)s(TMs) in the major agricultural producing areas in Chongqing, China. We analyzed the source apportionment and assessed the health risk of TMs in agricultural soils by using positive matrix factorization(PMF) model and health risk assessment(HRA) model based on Monte Carlo simulation. Meanwhile, we combined PMF and HRA models to explore the health risks of TMs in agricultural soils by different pollution sources to determine the priority control factors. Results showed that the average contents of cadmium(Cd), arsenic (As), lead(Pb), chromium(Cr), copper(Cu), nickel(Ni), and zinc(Zn) in the soil were found to be 0.26, 5.93, 27.14, 61.32, 23.81, 32.45, and 78.65 mg/kg, respectively. Spatial analysis and source apportionment analysis revealed that urban and industrial sources, agricultural sources, and natural sources accounted for 33.0%, 27.7%, and 39.3% of TM accumulation in the soil, respectively. In the HRA model based on Monte Carlo simulation, noncarcinogenic risks were deemed negligible(hazard index <1), the carcinogenic risks were at acceptable level(10^(-6)<total carcinogenic risk ≤ 10^(-4)), with higher risks observed for children compared to adults. The relationship between TMs, their sources, and health risks indicated that urban and industrial sources were primarily associated with As, contributing to 75.1% of carcinogenic risks and 55.7% of non-carcinogenic risks, making them the primary control factors. Meanwhile, agricultural sources were primarily linked to Cd and Pb, contributing to 13.1% of carcinogenic risks and 21.8% of non-carcinogenic risks, designating them as secondary control factors.
基金supported by the National Natural Science Foundation of China (41471190)the National Key Research and Development Program of China (2016YFD0800102)+2 种基金the Special Fund for the Agricultural Public Welfare Profession of China (201503106)the Newton Fund, United Kingdom (BB/N013484/1)the GEF on the ‘Towards INMS’
文摘The upland agricultural soils in North China are distributed north of a line between the Kunlun Mountains, the Qinling Mountains and the Huaihe River. They occur in arid, semi-arid and semi-humid regions and crop production often depends on rain-fed or irrigation to supplement rainfall. This paper summarizes the characteristics of gross nitrogen(N) transformation, the fate of N fertilizer and soil N as well as the N loss pathway, and makes suggestions for proper N management in the region. The soils of the region are characterized by strong N mineralization and nitrification, and weak immobilization and denitrification ability, which lead to the production and accumulation of nitrate in the soil profile. Large amounts of accumulated nitrate have been observed in the vadose-zone in soils due to excess N fertilization in the past three decades, and this nitrate is subject to occasional leaching which leads to groundwater nitrate contamination. Under farmer's conventional high N fertilization practice in the winter wheat-summer maize rotation system(N application rate was approximately 600 kg ha–1 yr–1), crop N uptake, soil residual N, NH_3 volatilization, NO_3~– leaching, and denitrification loss accounted for around 27, 30, 23, 18 and 2% of the applied fertilizer N, respectively. NH_3 volatilization and NO_3~– leaching were the most important N loss pathways while soil residual N was an important fate of N fertilizer for replenishing soil N depletion from crop production. The upland agricultural soils in North China are a large source of N_2O and total emissions in this region make up a large proportion(approximately 54%) of Chinese cropland N_2O emissions. The “non-coupled strong ammonia oxidation” process is an important mechanism of N_2O production. Slowing down ammonia oxidation after ammonium-N fertilizer or urea application and avoiding transient high soil NH4+ concentrations are key measures for reducing N_2O emissions in this region. Further N management should aim to minimize N losses from crop and livestock production, and increase the recycling of manure and straw back to cropland. We also recommend adoption of the 4 R(Right soure, Right rate, Right time, Right place) fertilization techniques to realize proper N fertilizer management, and improving application methods or modifying fertilizer types to reduce NH_3 volatilization, improving water management to reduce NO_3~– leaching, and controlling the strong ammonia oxidation process to abate N_2O emission. Future research should focus on the study of the trade-off effects among different N loss pathways under different N application methods or fertilizer products.
基金1Project supported by the National Key Basic Research Support Foundation (NKBRSF) of China (No. 2002CB410805)and the Outstanding Youth Fund of National Natural Science Foundation of China (No. 40325001).
文摘Selected persistent organochlorine pesticides (OCPs), including 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane (DDT) and its principal metabolites 1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene (DDE) and 1,1-dichloro-2,2-bis(p-chlorophenyl)e- thane (DDD), hexachlorocyclohexane (HCH) and its isomers (α-,β-, γ-, and δ-HCH), hexachlorobenzene (HCB), endo- sulfan, dieldrin, and endrin were quantified to determine current levels of organochlorine pesticides, to assess the eco- toxicological potential, and to distin…
基金supported by the Geological Survey of China and the Jiangsu Province Program "Multipurpose Geochemical Survey of Jiangsu Province" (No.200312300008)
文摘Xuzhou City is an important base for coal production and coal-fired power. To evaluate selenium contamination in this area, we sampled agricultural soil, soil profile, irrigation water, bedrock, coal, fly ash, paddy rice, and vegetables from the north of Xuzhou City, and determined their selenium contents. The background level of selenium in the soil profile was 0.08 mg/kg. The selenium concentrations in agricultural soils and irrigation water were in the range of 0.21-4.08 mg/kg and 0.002-0.29 mg/L, respectively. Soils with high selenium content were located closely to coalmines and power plants. The average selenium concentrations in coal and coal fly ash were 5.46 and 2.81 mg/kg, respectively. In contrast, the concentrations of selenium in bedrock and in the soil profile were very low. These results imply that the high selenium level in agricultural soils is mainly caused by anthropogenic activities, rather than by parent material. The arithmetic mean of selenium concentration in paddy rice was 0.116 mg/kg, and in cabbage was 0.05 mg/kg. The selenium concentration in rice was positively correlated with total selenium concentration in soil, suggesting that selenium in soil is readily transferred into the crops. Furthermore, the estimated dietary intake (88.8 μg) of selenium from paddy rice and cabbage exceeds the recommended dietary allowance (55 μg). Therefore, there is a potential health risk from consumption of local staple food in the study area.
文摘The eutrophication problem has drawn attention to nutrient leaching from agricultural soils, and an understanding of spatial and temporal variability is needed to develop decision-making tools. Thus, eleven sites were selected to monitor, over a two-year period, spatial and temporal variation of runoff discharge and various forms of N in surface runoff in sandy agricultural soils. Factors influencing the variation of runoff discharge and various forms of N in surface runoff were analyzed. Variation of annual rainfall was small among 11 sites, especially between 2001 and 2002. However, variation of annual discharge was significant among the sites. The results suggest that rainfall patterns and land use had significant effect on discharge. The concentrations of total N, total kjeldahl N (TKN), organic matter-associated N (OM-N), NO3- -N, and NHn+-N in the runoff ranged widely from 0.25 to 54.1, 0.15 to 20.3, 0.00 to 14.6, 0.00 to 45.3, and 0.00 to 19.7 mg/L, respectively. Spatial and temporal variations in the N concentration and runoff discharge were noted among the different sites. Annual loads of N in the runoff varied widely among monitoring sites and depend mainly on runoff discharge. High loads of total N, OM-N, NO3--N, and NHn+-N in the runoff either in citrus groves or on vegetable farms occurred from June to October for each year, which coincided with the rainy season in the region. This study found that N in surface runoff was related to rainfall intensity, soil N level, and fertilizer use.
基金TheNationalNaturalScienceFoundationofChina (No .496 710 0 4) TheDirectorFoundationofInstituteofGeographicSciencesandNaturalRe
文摘An enclosed chamber technique was used to measure N 2O emissions from intensively agricultural soils of the North China Plain during the periods of 1995—1996 and 1997—1998, to reflect distinct components of winter wheat and summer maize growing seasons. The results showed that the continuous application of fertilizer in agricultural soils increased N\-2O emissions by a factor of 24.1—28.1, the calculated annual chemical N fertilizer\|transformed N\-2O\|N emissions was 0.67%. Our results indicated that the application of organic manure also had a significant influence on soil N 2O emissions, which combined with the use of chemical N increased about 20% in a year. It was calculated that there were about 0.11% N of organic manure transformed as N 2O N. Annual mean N 2O emission from our study area of fertilized soils was estimated to be 57.1 μgN 2O/(m 2·h). A weak correlation was also found between N 2O emissions and soil available nitrogen content NH + 4.
基金Project supported by the State Environmental Protection Administration of China (No.2001-1-2)State Environmental Protection Administration of Guangdong (No.2001-08)Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control,and the National Natural Science Foundation of China(Nos.30170147 and 30270282)
文摘The contributions of persistent organic pollutants (POPs) from the subtropical regions of China to pollution of the global environment have been paid great attention; however, little is known about the state of POPs in agricultural ecosystems within these regions of China. This study primarily revealed the state of the contamination and distribution of polycyclic aromatic hydrocarbons (PAH) in agricultural soils in the subtropical regions. 115 surface soils (0-20 cm) were sampled in the breadbaskets of these regions. The concentrations and types of PAH were determined using gas chromatography linked to mass spectrometry (GC-MS). The total PAH concentrations ranged from 22.1 to 1 256.9 ng g^-1 with a mean of 318.2 ± 148.2 ng g^-1. In general terms, the current PAH concentrations were lower than most PAH levels reported in a number of investigations from different countries and regions. PAH isomer ratios indicated that pyrolytic origins, such as fossil fuel combustion related to vehicle tail gas and industrial emissions, were the dominant sources of PAH in the southern subtropical areas of China. Although PAH concentrations decreased with decreasing pollution, population, and traffic density, to a great extent PAH compositions were similar throughout subtropical soils, with naphthalene, phenanthrene, fluoranthene, and benzo(b)fluoranthene being dominant.
基金Supported by the National High-Technology Research and Development Program of China under Grant Nos 2014AA06A513 and 2013AA065502the National Natural Science Foundation of China under Grant No 61378041the Anhui Province Outstanding Youth Science Fund of China under Grant No 1508085JGD02
文摘Due to its complicated matrix effects, rapid quantitative analysis of chromium in agricultural soils is difficult without the concentration gradient samples by laser-induced breakdown spectroscopy. To improve the analysis speed and accuracy, two calibration models are built with the support vector machine method: one considering the whole spectra and the other based on the segmental spectra input. Considering the results of the multiple linear regression analysis, three segmental spectra are chosen as the input variables of the support vector regression (SVR) model. Compared with the results of the SVR model with the whole spectra input, the relative standard error of prediction is reduced from 3.18% to 2.61% and the running time is saved due to the decrease in the number of input variables, showing the robustness in rapid soil analysis without the concentration gradient samples.
文摘Although numerous studies about the nature and turnover of soil organic matter(SOM) in light and heavy fractions( LFOM and HFQM, respectively) have been made, little information is available in relation to the relationship between LFQM and HFOM, and no attempts have been made to quantify a general relationship between LFQM and HFQM for agricultural soils under field condition. Qur hypothesis is there may be an inherent relationship between LFQM and HFQM for agricultural soils under certain unaltered management practices for a long period, to this end, we therefore studied typically soils taken from different parts in China by using a simple density fractionation procedure. The results indicated that LFQM was positively correlated with LFOM/HFOM ratio for three typical soils. This information will be of particular use not only in deepening our understanding of the dynamics of SQM fractions but also in evaluating the potential of agricultural soils to sequestrate C under different management practices in a long term.
基金Project supported by the National Basic Research Program (973) of China (Nos. 2005CB121104 and 2002CB410804)the National Natural Science Foundation of China (No. 40471064)the Natural Science Foundation of Zhejiang Province (No. R306011), China
文摘Soils can often be contaminated simultaneously by more than one heavy metal. The sorption-desorption behavior of a metal in a soil will be affected by the presence of other metals. Therefore, selective retention and competitive adsorption of the soils to heavy metals can affect their availability and movement through the soils. In this study, the simultaneous competitive adsorption of four heavy metals (Cd, Cu, Hg, and Pb) on ten agricultural soils collected from the Changjiang and Zhujiang deltas, China was assessed. The results showed that the competition affected the behavior of heavy metal cations in such a way that the soils adsorbed less Cd and Hg, and more Pb and Cu with increasing total metal concentrations, regardless of the molar concen- tration applied. As the applied concentrations increased, Pb and Cu adsorption increased, while Cd and Hg adsorption decreased. The adsorption sequence most found was Pb>Cu>Hg>Cd. The maximum adsorption capacity for the heavy metal cations was calculated, and affected markedly by soil properties. The results suggest that Hg and Cd have higher mobility associated to the lower adsorption and that Pb and Cu present the opposite behavior. Significant correlations were found between the maximum adsorption capacity of the metals and pH value and exchangeable acid, suggesting that soil pH and exchangeable acid were key factors controlling the solubility and mobility of the metals in the agricultural soils.
文摘The objective of this study is to assess the level of metal contamination of sediments and agricultural soils in the Ity-Floleu zone. The concentrations of trace elements (Fe, Mn, As, Cd, Cr, Cu, Hg, Ni, Pb and Zn) were measured in different seasons over two successive years. The sediment pollution index made it possible to note that the sediments and agricultural soils of the various stations studied are highly polluted in all seasons. The calculation of the geoaccumulation index indicates that surface water sediments most often experience extreme or moderate pollution in As, Cd, Cu, Hg and Zn in the dry or rainy season except in Pb in some cases. We observed that the sediments of the Cavally river present a serious pollution due to extreme anthropic activities carried out along the river. Over the entire region, the results of the potential ecological risk index (RI) indicate that all the sediments and agricultural soils analysed present a moderate ecological risk in terms of Pb and Zn in certain cases and an ecological risk is observed low bound to other metals in all seasons. This metallic pollution generated by human activities in this region can have consequences for the environment and biodiversity.
文摘This work focuses on the analysis of the chemical composition of soils dedicated to agriculture in order to assess the impacts of manganese mining activity in the city of Moanda in South-East Gabon. The result of the analysis obtained using wavelength dispersive X-ray fluorescence revealed the presence of twenty-seven elements in the seventeen soil samples collected namely: Na, K, Rb, Mg, Ca, Sr, Ba, Ti, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Cr, Mn, Al, O, C, P, S, Si, I, Ac and Th. Iron (Fe), aluminum (Al) and manganese (Mn) were respectively higher. The practice of agriculture near mining sites is not without risks for the quality of agricultural products and the health of the population.
基金Project supported by the National Natural Science Foundation of China (No. 40001008) the Science and Technology Project of Zhejiang Province (No. 2004C32066).
文摘Heavy metal concentrations in agricultural soils of Zhejiang Province were monitored to indicate the status of heavy metal contamination and assess environmental quality of agricultural soils. A total of 908 soil samples were collected from 38 counties in Zbejiang Province and eight heavy metal (Cd, Cr, Pb, Hg, Cu, Zn, Ni and As) concentrations had been evaluated in agricultural soil. It was found 775 samples were unpolluted and 133 samples were slightly polluted and more respectively, that is approximately 14.65% agricultural soil samples had the heavy metal concentration above the threshold level in this province by means of Nemerow's synthetical pollution index method according to the second grade of Standards for Soil Environmental Quality of China (GB15618- 1995). Contamination of Cd was the highest, followed by Ni, As and Zn were lower correspondingly. Moreover, Inverse Distance Weighted (IDW) interpolation method was used to make an assessment map of soil environmental quality based on the Nemerow's pollution index and the soil environmental quality was categorized into five grades. Moreover, ten indices were calculated as input parameters for principal component analysis (PCA) and the principal components (PCs) were created to compare environmental quality of different soils and regions. The results revealed that environmental quality of tea soils was better than that of paddy soils, vegetable soils and fruit soils. This study indicated that GIS combined with multivariate statistical approaches proved to be effective and powerful tool in the mapping of soil contamination distribution and the assessment of soil environmental quality on provincial scale, which is beneficial to environmental protection and management decision-making by local government.
基金Project supported by the RURBIFARM (Sustainable Farming at the Rural-Urban Interface) project of the European Union (No. ICA4-CT-2002-10021)the Knowledge Innovation Program of the Chinese Academy of Sciences (No. KZCX3-SW-427)the National Key Basic Research Support Foundation of China (No. 2002CB410810).
文摘In industry-oriented peri-urban areas, the heavy metal accumulation in soils caused by industrialization has become a potential threat. The top soil samples from 27 paddy fields and 75 vegetable fields were collected from a typical industry- based peri-urban area of about 8 km^2 in Wuxi, China, to study the accumulation and distribution of As, Hg, Cu, Zn, Pb, Cr, and Cd in comparison with heavy metal contents in soils near developed industrial sites (Guangzhou, China; Wallsend Burn of Tyneside, UK; and Osnabrück, Germany). Kriging interpolation was used to determine the metals, spatial distribution. The results showed that most soils, compared to the background values, contained elevated contents of As, Hg, Cu, Zn, and Pb with some having elevated contents of Cd and Cr. Except for less than 10% of the soil samples of Cu, Zn and Cd contents, these heavy metal contents were lower than the soil threshold levels of the Grade Ⅱ criteria for the Chinese environmental quality standard. Probably, because of the scattered distribution and diversity of industries in the study area, spatial distributions of these heavy metals from Kriging interpolation indicated little similarity. Nevertheless, when compared with other areas in the Taihu Lake region, mean contents of Cu, Zn, Pb, and Cd were relatively high in the Wuxi peri-urban area. Additionally, compared to soils in agricultural areas around Guangzhou, Osnabrück, or Wallsend Burn, contents of most heavy metals in soils from this area were lower.
基金Important National Science & Technology Specific Projects of China, No.2007zx07211Fund from the Ministry of Environmental Protection of the People’s Republic of China, No.0202043
文摘A total of 118 of agricultural soil and 43 of vegetable samples were collected from Dongguan City, Guangdong, China. The spatial distribution, sources, accumulation characteristics and potential risk of heavy metals in the agricultural soils and vegetables were depicted in details by three different approaches, including total contents of eight metal elements in soils and vegetables, GIS maps and multivariate analysis of heavy metals in soils in the study. The results show that there are higher accumulation of heavy metals such as Cu, Zn, Ni, Pb, Cd and Hg in agricultural soils, and the contents of Pb (65.38 mg kg^-1) and Hg (0.24 mg kg^-1) are 1.82 and 2.82 times of the background contents of the corresponding heavy metals in soils of Guangdong Province, respectively. There are about 3.4% of Cu, 5.9% of Ni, 1.7% of Cd and 28% of Hg in all collected soil samples from all investigated sites which have overran the contents for heavy metals of the China Environmental Quality Standard for Soils (GB15618-1995, Grade Ⅱ). The pollution characteristics of multi-metals in soils are mainly reflected by Hg. There are different sources to eight metal elements in soils, Cu, Zn, Ni Cr and As are predominantly derived from parent materials, and Pb, Hg and Cd are affected by anthropogenic activities. The spatial distribution shows that the Cu, Zn, Ni, Cr, Pb, As and Hg contents of agricultural soils are high in the west and low in the east, and Cd contents are high in the northwest, southeast and low in the southwest in Dongguan. The ratios of vegetable samples which Ni, Pb and As concentrations higher than the Maximum Levels of Contaminants in Foods (GB2762-2005) are 4.7%, 16.3% and 48.8%, respectively. The order of bio-concentration factors (BCF) of heavy metals in vegetables is Cd 〉 Zn 〉 Cu 〉 As 〉 Ni 〉 Hg 〉 Cr 〉 Pb. It is necessary to focus on potential risk of heavy metals for food safety and human's health from agricultural soils and vegetables in Dongguan City, Guangdong Province.
基金Project supported by the National Basic Research Program (973) of China(No. 2002CB410810).
文摘A total of 198 agricultural soil samples were collected from Zhangjiagang and Changshu in Southern Jiangsu for analysis of 13 polychlorinated biphenyls (PCBs) in order to assess the levels of pollution, sources, area distribution, and potential risk for the environment. All methods were rigorously tested and an adequate quality control was ensured. Only one site had no PCBs residues, and the highest total PCBs concentration in the surface soils was 32.83 ng/g. The average concentration in all the soil samples was 4.13 ng/g, signaling low-level pollution. Tetra-, penta-, and hexa-chlorinated biphenyls were dominant species in soil samples, accounting for more than 75% of ∑PCBs in the soil samples. PCB118 was the most abundant congener in all the samples. The PCB118 was about 20% of ∑PCBs. The soil organic matter content showed only a weak correlation with the levels of all PCB congeners, in which a better correlation was noted for the more volatile lighter PCB congeners than for the heavier homologues. To a certain extent, the sources and land use seemed to influence the levels of PCBs.
基金National Natural Science Foundation of China, No.40701164, No.40730526 Public Project of Ministry of Environmental Protection of China, No.WFLY-2009-1-SK-06-03 National Key Water Program during the 1 lth Five-Year Plan Period, No.2009ZX07317-006
文摘The environmental quality of heavy metals (Pb, Cd, Cr, As, Hg) in agricultural surface soil of Chongming Island was assessed by national, local and professional standards based on a large scale investigation, in which 28 samples from vegetable plots, 65 samples from paddy fields and 9 samples from watermelon fields were collected from whole island area. Results showed that the average concentration of Pb, Cd, Cr, As and Hg was 21.6 mg.kg^-l,0.176 mg.kg^-1, 69.4 mg.kg^-1, 9.209 mg.kg^-1 and 0.128 mg.kg^-1, respectively. Compared with the background value of Shanghai City soil, except for Pb and Cr, all the other heavy metals average concentrations in Chongming Island agricultural surface soil exceeded their corresponding natural-background values. The concentrations of Cd, As and Hg were 33.0%, 1.2% and 26.3% higher than the background value of Shanghai City, respectively. In addition, inverse distance interpolation (IDW) tool of GIS was also applied to study the spatial variation of heavy metals. The results indicated that most of agricultural soil quality was good, and the ratio of ecological, good soil, certified soil and disqualified soil were 1.26%, 97.1%, 1.47% and 0.12%, respectively. About 10.1%, 85.7%, 27.0%, 55.4% and 55.2% soil samples exceeded the Pb, Cd, Cr, As and Hg background value of Shanghai City, respectively. Among these three land use type soils, vegetable soil was most seriously polluted by heavy metals, which is probably related to the over-application of pesticides. The annual deposition fluxes of Pb, Cd, As and Hg were 7736μg·m^-2·a^-1, 208μg·m^-2·a^-1, 2238μg·m^-2·a^-1 and 52.8 μg·m^-2·a^-1 respectively. Crop straw burning was the important source of heavy metals of atmospheric deposition, and atmospheric deposition contributed a lot to heavy metals in agricultural soil in Chongming Island.
文摘Distribution and speciation of heavy metals of agricultural soils(85 surface soil samples and 4 soil profiles) in Dongguan were investigated, while total Cr, Cu, Ni, Pb, Zn(abbreviated as Cr, Cu, Ni, Pb, Zn) and available Cu, Zn(Av-Cu, Av-Zn) were analyzed by a flame absorption spectrophotometer(AAS), and total Cd(Cd) was analyzed using graphite furnace AAS. The content of Cd, Cu and Ni was partially much more than the second grade of GB15618-1995 even though the mean contents of all heavy metal were less than the threshold value of the second grade and only the mean content of Pb was more than the value of national background. Results of descriptive statistic showed that the mean content of heavy metals should depend on land utilization and spatial location at some extent. The heavy metal contents were higher in the Southwest and Northwest than in the Central. In addition, the mean contents of Zn and Pb in Dongguan paddy soils were significantly higher than those of Pearl River Delta(PRD) and Taihu Lake region(TLR). Correlation analyses indicated that there existed significant correlation between Cr and Ni in orchard soils, and among Zn, Cd and Cu, between Av-Cu and Cu, between Av-Zn and Cr, Ni, pH value in vegetable soils, and a weak relationship between Cd, Cu and Pb, between Av-Zn and Zn. Principal component analyses(PCA) showed that the order of importance should be Zn>Pb>Cr>Ni>Cu.
基金Supported by Youth Innovation Fund of Inner Mongolia Academy of Agricultural&Animal Husbandry Sciences(2014QNJJN04)Inner Mongolia Science and Technology Planning Project(2014KJ0610)~~
文摘[Objective] This study was conducted to provide a scientific theoretical ba- sis for pollution forewarning and agricultural planning. [Method] 15 PAHs were stud- ied for pollution characteristics, source analysis and ecological risk assessment at 60 sites in Hohhot farmland. [Result] The results showed that the total contents of 15 PAHs (:EPAHs) in 60 sampling points of Hohhot farmland were in the range of 114-948 ~g/kg, with an average content of 338 pg/kg. According to soil PAH as- sessment standards, more than 70% of soil in Hohhot City was lightly polluted, and there were no heavily-polluted points. The soil of the area was mainly polluted by PAHs with high molecular weights, which accounted for 74% of the total content. The soil in suburban farmland of Hohhot suffered from the heaviest pollution. Quan- titative analysis showed that PAH pollution in Hohhot farmland was mainly from combustion of coal, coke and timber and automotive exhaust emission. [Conclusion] Ecological effect interval method and method of equivalents equivalent to benzo (a) pyrene toxicity benzo [a] pyrene both proved that there is certain potential ecological risk for soil of Hohhot farmland, and PAHs with high molecular weights such as benzo (a) pyrene and dibenzo [a, h] anthracene are main potential pollutants with ecological risk.
基金This work was supported by the University of the Balearic Islands and the Regional Government of the Balearic Islands.
文摘To avoid soil degradation,adapt to climate change and comply with the Sustainable Development goals 2030(UN General Assembly),establishing the quality/fertility of the agricultural soils of the Mediterranean region and evaluate how these evolve with time is mandatory.This enables adequate management practices to be implemented.The Mediterranean calcareous region has received little attention in this sense,in spite its soil particularities.So,24 different representative calcareous agricultural soils of the Mediterranean region,including the main management strategies of agricultural soils(rainfed and irrigated),were sampled from the island of Mallorca;and their physical,chemical and biological properties determined.The values obtained for most of the soil characteristics allowed to establish an initial approach to the reference values for the type of calcareous agricultural soils considered,and to clearly distinguish the effect of rainfed or irrigation management practices on soils properties and dynamics.Some enzyme activities were not stimulated by the irrigation conditions assayed or they were only in dry conditions,suggesting optimum enzyme activities could be obtained when alternating dry and humid soil conditions.Soil organic carbon,calcium carbonate and active lime revealed of significant importance in the collection of soils.Finally,the results obtained clearly indicate the heterogeneity of the region and its implications on the different soil characteristics.Therefore,this study could serve as a starting point to adequately establish the quality(fertility)for Mediterranean calcareous agricultural soils and their reference values by conducting further research in this region and including more type of soils.