The frost-free period(FFP)first frost date(FFD) and last frost date(LFD) have been regard as the important climate variables for agricultural production. Understanding the spatio-temporal variations of the FFPFF...The frost-free period(FFP)first frost date(FFD) and last frost date(LFD) have been regard as the important climate variables for agricultural production. Understanding the spatio-temporal variations of the FFPFFD and LFD is beneficial to reduce the harmful impacts of climate change on agricultural production and enhance the agricultural adaptation. This study examined daily minimum temperatures for 823 national-level meteorological stationscalculated the values of FFDLFD and FFP for station-specific and region-specific from 1951 to 2012estimated the gradients of linear regression for station-specific moving averages of FFDLFD and FFPand assessed station-specific time series of FFP and detected the abrupt change. The results as follows: at both the station level and the regional levelthe FFP across China decreases with the increase of latitude from south to northand with the increase of altitude from east to west generally. At the station levelthe inter-annual fluctuations of FFDLFD and FFP in south and west agricultural regions are greater than those in north and east. At the regional levelexcluding the QT regiontemporal changes of FFP are relatively small in both the low-latitude and the high-latitude regionsbut for the mid-latitude regions. According to the linear trend gradients of the moving average values of station-specific FFDLFD and FFPFFD was delayedLFD advancedand FFP extended gradually over the 80% of China. Furthermorethe change magnitudes for FFDLFD and FFP in the north and east agricultural regions are higher than that in the southern and western. Among the 659 station-specific time series of FFP examined by the Mann-Kendall test341 stationslocated mainly in the north regionhave one identifiable and significant abrupt change. And at the 341 stations with identified abrupt changesmost(57%) abrupt changes occurred during 1991–2012followed by the periods of 1981–1990(28%)1971–1980(12%)and 1951–1970(3%). The spatio-temporal variations of FFDLFD and FFP would provide important guidance to agricultural practices.展开更多
基金National Basic Program of China(973 Program),No.2012CB955800National Natural Science Foundation of China,No.41671536,No.41501588+1 种基金Qinghai Key Laboratory Open Fund of Disaster Prevention and Reduction,No.QHKF201401Key Scientific Research Projects in Colleges and Universities,No.17A170005
文摘The frost-free period(FFP)first frost date(FFD) and last frost date(LFD) have been regard as the important climate variables for agricultural production. Understanding the spatio-temporal variations of the FFPFFD and LFD is beneficial to reduce the harmful impacts of climate change on agricultural production and enhance the agricultural adaptation. This study examined daily minimum temperatures for 823 national-level meteorological stationscalculated the values of FFDLFD and FFP for station-specific and region-specific from 1951 to 2012estimated the gradients of linear regression for station-specific moving averages of FFDLFD and FFPand assessed station-specific time series of FFP and detected the abrupt change. The results as follows: at both the station level and the regional levelthe FFP across China decreases with the increase of latitude from south to northand with the increase of altitude from east to west generally. At the station levelthe inter-annual fluctuations of FFDLFD and FFP in south and west agricultural regions are greater than those in north and east. At the regional levelexcluding the QT regiontemporal changes of FFP are relatively small in both the low-latitude and the high-latitude regionsbut for the mid-latitude regions. According to the linear trend gradients of the moving average values of station-specific FFDLFD and FFPFFD was delayedLFD advancedand FFP extended gradually over the 80% of China. Furthermorethe change magnitudes for FFDLFD and FFP in the north and east agricultural regions are higher than that in the southern and western. Among the 659 station-specific time series of FFP examined by the Mann-Kendall test341 stationslocated mainly in the north regionhave one identifiable and significant abrupt change. And at the 341 stations with identified abrupt changesmost(57%) abrupt changes occurred during 1991–2012followed by the periods of 1981–1990(28%)1971–1980(12%)and 1951–1970(3%). The spatio-temporal variations of FFDLFD and FFP would provide important guidance to agricultural practices.