[Objective] The aim was to investigate the effects of DPC chemical controlling technique on agronomic traits, yield and quality of machine-harvested cotton in the Yellow River Valley of China, and clarify the reasonab...[Objective] The aim was to investigate the effects of DPC chemical controlling technique on agronomic traits, yield and quality of machine-harvested cotton in the Yellow River Valley of China, and clarify the reasonable control period and the application amount of DPC. [Method] The new machine-harvested cotton variety Hengmian HD008 was used as the test material, and 3 different DPC treatments were set. [Result] DPC significantly reduced plant height and branch length, reduced branch angle and leaf area, so the rational control can effectively shape the ideal plant type of machine-harvested cotton. DPC had significant effects on yield and yield components, and the proper amount of DPC could increase the number of bolls during hot days, the number bolls in autumn and the total number of bolls. It increased the boll weight and seed index, but decreased lint percentage decreased, and proper amount of DPC could increase the yield. DPC significantly increased the specific breaking strength of fibers, and proper control could improve the uniformity of fibers, but other indexes had no significant influence. [Conclusion] According to the requirements of machine harvest to the agronomic traits of cotton and the growth characteristics of cotton plant, chemical control could begin after floral bud emergence in cotton about every 10 d, and the spraying amount can be controlled according to the growth amount of the main stem. The daily growth amount of plant height should be controlled at 1.5-1.8 cm, and the plant height should be within 75-90 cm.展开更多
The content of phytochemicals in vegetables is strongly affected by genetic, agronomic, and environmental factors, and by transportation and storage conditions, potentially affecting the sensory and putative health-pr...The content of phytochemicals in vegetables is strongly affected by genetic, agronomic, and environmental factors, and by transportation and storage conditions, potentially affecting the sensory and putative health-promoting properties. In this study the impact of different agricultural techniques on the phenolics content and antioxidant activity of extracts from a traditional Italian kale landrace, called palm-tree kale (Brassica oleracea L., ssp. acephala DC, var. sabellica L.) was evaluated. Furthermore, the antioxidant effects of the different extracts were assessed in a biological system using primary cultures of neonatal rat cardiomyocytes. The final aim was to evidence whether and how the agronomic practices can affect the antioxidant properties of kale not only in vitro but also in cells. Results herein reported underline the influence of the crop production strategies in establishing the potential health benefits of a vegetable. This research approach could be useful for the selection of production techniques that are able to provide edible vegetables with higher functional activity, and evidences the need to study the food domain as a whole with the nutrition domain, and to integrate all results in order to have an overall “foodomics” vision allowing the improvement of health and well-being.展开更多
基金Supported by the Fundamental Research Funds of the Heibei Academy of Agriculture and Forestry Sciences(A2015040201)the Cotton Industry Technology System of Hebei Province+1 种基金the Key Research and Development Planning Program of Hebei Province(16226303D)the Financial Program of Hebei Province(F17C10005)~~
文摘[Objective] The aim was to investigate the effects of DPC chemical controlling technique on agronomic traits, yield and quality of machine-harvested cotton in the Yellow River Valley of China, and clarify the reasonable control period and the application amount of DPC. [Method] The new machine-harvested cotton variety Hengmian HD008 was used as the test material, and 3 different DPC treatments were set. [Result] DPC significantly reduced plant height and branch length, reduced branch angle and leaf area, so the rational control can effectively shape the ideal plant type of machine-harvested cotton. DPC had significant effects on yield and yield components, and the proper amount of DPC could increase the number of bolls during hot days, the number bolls in autumn and the total number of bolls. It increased the boll weight and seed index, but decreased lint percentage decreased, and proper amount of DPC could increase the yield. DPC significantly increased the specific breaking strength of fibers, and proper control could improve the uniformity of fibers, but other indexes had no significant influence. [Conclusion] According to the requirements of machine harvest to the agronomic traits of cotton and the growth characteristics of cotton plant, chemical control could begin after floral bud emergence in cotton about every 10 d, and the spraying amount can be controlled according to the growth amount of the main stem. The daily growth amount of plant height should be controlled at 1.5-1.8 cm, and the plant height should be within 75-90 cm.
文摘The content of phytochemicals in vegetables is strongly affected by genetic, agronomic, and environmental factors, and by transportation and storage conditions, potentially affecting the sensory and putative health-promoting properties. In this study the impact of different agricultural techniques on the phenolics content and antioxidant activity of extracts from a traditional Italian kale landrace, called palm-tree kale (Brassica oleracea L., ssp. acephala DC, var. sabellica L.) was evaluated. Furthermore, the antioxidant effects of the different extracts were assessed in a biological system using primary cultures of neonatal rat cardiomyocytes. The final aim was to evidence whether and how the agronomic practices can affect the antioxidant properties of kale not only in vitro but also in cells. Results herein reported underline the influence of the crop production strategies in establishing the potential health benefits of a vegetable. This research approach could be useful for the selection of production techniques that are able to provide edible vegetables with higher functional activity, and evidences the need to study the food domain as a whole with the nutrition domain, and to integrate all results in order to have an overall “foodomics” vision allowing the improvement of health and well-being.
文摘在移动式防雨棚条件下.采用子母盆栽土培法和池栽微区试验相结合的方法,以冬小麦品种93中6为试验材料进行了调亏灌溉(Regulated deficit irrigation,RDI)试验研究,旨在了解调亏灌溉对小麦不同生育阶段生长动态、蒸腾速率(Tr)、光合速率(Pn)、光合产物积累与分配以及最终籽粒产量和水分利用效率(WUE)的影响,寻求适宜的调亏生育阶段(时期)和调节亏水度,为建立冬小麦RDI模式及其配套优化农艺方案提供理论依据。结果表明,适时适度的水分调亏显著抑制Tr,而Pn下降不明显;复水后Pn又具有超补偿效应,光合产物具有起补偿积累,且有利于向籽粒运转与分配;抑制营养生长,促进生殖生长。冬小麦调亏灌溉的适宜时段为三叶~返青,调亏度为40%FC(Field water capacity,FC)~60%FC,历时约55d;平均比对照增产0.88%~8.25%,节水12.80%~18755%,水分利用效率提高15.96%~32.98%。通过三因子正交旋转组合设计综合分析试验资料,分别建立了经济产量(Y)及水分利用效率(WUE)的数学模型。对模型的解析结果表明,当实施RDI时,可适当提高作物群体指标,并与施肥等其它农艺技术相结合,可以补偿RDI的负面效应。对所建数学模型进行目标联合仿真寻优,获得不同决策目标下RDI与农艺技术结合的优化方案。