Field experiments were conducted in farmers’ rice fields in 2001 and 2002 to study the effects of nitrogen (N) man-agement strategies on N use efficiency in recovery (RE), agronomy (AE) and physiology (PE) and redist...Field experiments were conducted in farmers’ rice fields in 2001 and 2002 to study the effects of nitrogen (N) man-agement strategies on N use efficiency in recovery (RE), agronomy (AE) and physiology (PE) and redistribution of dry matter accumulation (DMA) and nitrogen accumulation (NA) in two typical rice cultivars in Jinhua, Zhejiang Province. This study aimed mainly at identifying the possible causes of poor fertilizer N use efficiency (NUE) of rice in Zhejiang by comparing farmers’ fertilizer practice (FFP) with advanced site-specific nutrient management (SSNM) and real-time N management (RTNM). The results showed that compared to FFP, SSNM and RTNM reduced DMA and NA before panicle initiation and increased DMA and NA at post-flowering. There is no significant difference between SSNM and FFP in post-flowering dry matter redistribution (post-DMR) and post-flowering nitrogen redistribution (post-NR). These results suggest that high input rate of fertilizer N and improper fertilizer N timing are the main factors causing low NUE of irrigated rice in the farmer’s routine practice of Zhejiang. With SSNM, about 15% of the current total N input in direct-seeding early rice and 45% in single rice could be reduced without yield loss in Zhejiang, China.展开更多
Secure data communication is an essential requirement for an Internet of Things(IoT)system.Especially in Industrial Internet of Things(IIoT)and Internet of Medical Things(IoMT)systems,when important data are hacked,it...Secure data communication is an essential requirement for an Internet of Things(IoT)system.Especially in Industrial Internet of Things(IIoT)and Internet of Medical Things(IoMT)systems,when important data are hacked,it may induce property loss or life hazard.Even though many IoTrelated communication protocols are equipped with secure policies,they still have some security weaknesses in their IoT systems.LoRaWAN is one of the low power wide-area network protocols,and it adopts Advanced Encryption Standard(AES)to provide message integrity and confidentiality.However,LoRaWAN’s encryption key update scheme can be further improved.In this paper,a Two-stage High-efficiency LoRaWAN encryption key Update Scheme(THUS for short)is proposed to update LoRaWAN’s root keys and session keys in a secure and efficient way.The THUS consists of two stages,i.e.,the Root Key Update(RKU)stage and the Session Key Update(SKU)stage,and with different update frequencies,the RKU and SKU provide higher security level than the normal LoRaWAN specification does.A modified AES encryption/decryption process is also utilized in the THUS for enhancing the security of the THUS.The security analyses demonstrate that the THUS not only protects important parameter during key update stages,but also satisfies confidentiality,integrity,and mutual authentication.Moreover,The THUS can further resist replay and eavesdropping attacks.展开更多
基金Project supported by the International Rice Research Institute (IRRI)Swiss Agency for Development and Cooperation (SDC)+3 种基金the Potash & Phosphate Institute and the Potash & Phosphate Institute of Canada (PPI-PPIC)the International Fertilizer Industry Association (IFA)the International Potash Institute (IPI)948 Project of the Ministry of Agriculture of China (No. 2003-Z53)
文摘Field experiments were conducted in farmers’ rice fields in 2001 and 2002 to study the effects of nitrogen (N) man-agement strategies on N use efficiency in recovery (RE), agronomy (AE) and physiology (PE) and redistribution of dry matter accumulation (DMA) and nitrogen accumulation (NA) in two typical rice cultivars in Jinhua, Zhejiang Province. This study aimed mainly at identifying the possible causes of poor fertilizer N use efficiency (NUE) of rice in Zhejiang by comparing farmers’ fertilizer practice (FFP) with advanced site-specific nutrient management (SSNM) and real-time N management (RTNM). The results showed that compared to FFP, SSNM and RTNM reduced DMA and NA before panicle initiation and increased DMA and NA at post-flowering. There is no significant difference between SSNM and FFP in post-flowering dry matter redistribution (post-DMR) and post-flowering nitrogen redistribution (post-NR). These results suggest that high input rate of fertilizer N and improper fertilizer N timing are the main factors causing low NUE of irrigated rice in the farmer’s routine practice of Zhejiang. With SSNM, about 15% of the current total N input in direct-seeding early rice and 45% in single rice could be reduced without yield loss in Zhejiang, China.
文摘Secure data communication is an essential requirement for an Internet of Things(IoT)system.Especially in Industrial Internet of Things(IIoT)and Internet of Medical Things(IoMT)systems,when important data are hacked,it may induce property loss or life hazard.Even though many IoTrelated communication protocols are equipped with secure policies,they still have some security weaknesses in their IoT systems.LoRaWAN is one of the low power wide-area network protocols,and it adopts Advanced Encryption Standard(AES)to provide message integrity and confidentiality.However,LoRaWAN’s encryption key update scheme can be further improved.In this paper,a Two-stage High-efficiency LoRaWAN encryption key Update Scheme(THUS for short)is proposed to update LoRaWAN’s root keys and session keys in a secure and efficient way.The THUS consists of two stages,i.e.,the Root Key Update(RKU)stage and the Session Key Update(SKU)stage,and with different update frequencies,the RKU and SKU provide higher security level than the normal LoRaWAN specification does.A modified AES encryption/decryption process is also utilized in the THUS for enhancing the security of the THUS.The security analyses demonstrate that the THUS not only protects important parameter during key update stages,but also satisfies confidentiality,integrity,and mutual authentication.Moreover,The THUS can further resist replay and eavesdropping attacks.