The turbo air classifier is widely used powder classification equipment in a variety of fields. The flow field characteristics of the turbo air classifier are important basis for the improvement of the turbo air class...The turbo air classifier is widely used powder classification equipment in a variety of fields. The flow field characteristics of the turbo air classifier are important basis for the improvement of the turbo air classifier's structural design. The flow field characteristics of the rotor cage in turbo air classifiers were investigated trader different operating conditions by laser Doppler velocimeter(LDV), and a measure diminishing the axial velocity is proposed. The investigation results show that the tangential velocity of the air flow inside the rotor cage is different from the rotary speed of the rotor cage on the same measurement point due to the influences of both the negative pressure at the exit and the rotation of the rotor cage. The tangential velocity of the air flow likewise decreases as the radius decreases in the case of the rotor cage's low rotary speed. In contrast, the tangential velocity of the air flow increases as the radius decreases in the case of the rotor cage's high rotary speed. Meanwhile, the vortex inside the rotor cage is found to occur near the pressure side of the blade when the rotor cage's rotary speed is less than the tangential velocity of air flow. On the contrary, the vortex is found to occur near the blade suction side once the rotor cage's rotary speed is higher than the tangential velocity of air flow. Inside the rotor cage, the axial velocity could not be disregarded and is largely determined by the distances between the measurement point and the exit.展开更多
The suitable process parameters for a two-stage turbo air classifier are important for obtaining the ultrafine powder that has a narrow particle-size distribution, however little has been published internationally on ...The suitable process parameters for a two-stage turbo air classifier are important for obtaining the ultrafine powder that has a narrow particle-size distribution, however little has been published internationally on the classification process for the two-stage turbo air classifier in series. The influence of the process parameters of a two-stage turbo air classifier in series on classification performance is empirically studied by using aluminum oxide powders as the experimental material. The experimental results show the following: 1) When the rotor cage rotary speed of the first-stage classifier is increased from 2 300 r/min to 2 500 r/min with a constant rotor cage rotary speed of the second-stage classifier, classification precision is increased from 0.64 to 0.67. However, in this case, the final ultrafine powder yield is decreased from 79% to 74%, which means the classification precision and the final ultrafine powder yield can be regulated through adjusting the rotor cage rotary speed of the first-stage classifier. 2) When the rotor cage rotary speed of the second-stage classifier is increased from 2 500 r/min to 3 100 r/min with a constant rotor cage rotary speed of the first-stage classifier, the cut size is decreased from 13.16 μm to 8.76 μm, which means the cut size of the ultrafine powder can be regulated through adjusting the rotor cage rotary speed of the second-stage classifier. 3) When the feeding speed is increased from 35 kg/h to 50 kg/h, the 'fish-hook' effect is strengthened, which makes the ultrafine powder yield decrease. 4) To weaken the 'fish-hook' effect, the equalization of the two-stage wind speeds or the combination of a high first-stage wind speed with a low second-stage wind speed should be selected. This empirical study provides a criterion of process parameter configurations for a two-stage or multi-stage classifier in series, which offers a theoretical basis for practical production.展开更多
An air classifier is one of the main and effective devices in cement industry.In this study,a three-dimensional,steady and two-phase(solid-gas)computational fluid dynamics(CFD)simulation was performed to optimize the ...An air classifier is one of the main and effective devices in cement industry.In this study,a three-dimensional,steady and two-phase(solid-gas)computational fluid dynamics(CFD)simulation was performed to optimize the performance of this device in the Kerman Momtazan cement plant,Iran.After the validation of CFD results,the air flow field and air path lines between fixed blades were checked carefully and the non-uniformity in velocity distribution and the formation of vortex flows between the blades close to particle inlets were observed.The study tried to improve the device efficiency by changing the method of entering particles into the device,resulting in a reduction in air classifier electrical energy consumption(from 41 to 35(kW h)/t)and an increase in production rate(from 203 to 214 t/h).Additionally,the study investigated the effects of other modifiable operating conditions like rotary cage rotation speed,pressure difference,and inlet air temperature on the particle size distribution and classifier efficiency.The results showed that increasing the cage rotation speed decreased the product rate and the product particles mean diameter while increasing pressure difference or increasing temperature increased the product rate and the product particles mean diameter.It was concluded that these modifiable operating conditions can significantly affect the performance of the air classifier in the cement industry.展开更多
基金supported by National Natural Science Foundation of China (Grant No. 50474035)
文摘The turbo air classifier is widely used powder classification equipment in a variety of fields. The flow field characteristics of the turbo air classifier are important basis for the improvement of the turbo air classifier's structural design. The flow field characteristics of the rotor cage in turbo air classifiers were investigated trader different operating conditions by laser Doppler velocimeter(LDV), and a measure diminishing the axial velocity is proposed. The investigation results show that the tangential velocity of the air flow inside the rotor cage is different from the rotary speed of the rotor cage on the same measurement point due to the influences of both the negative pressure at the exit and the rotation of the rotor cage. The tangential velocity of the air flow likewise decreases as the radius decreases in the case of the rotor cage's low rotary speed. In contrast, the tangential velocity of the air flow increases as the radius decreases in the case of the rotor cage's high rotary speed. Meanwhile, the vortex inside the rotor cage is found to occur near the pressure side of the blade when the rotor cage's rotary speed is less than the tangential velocity of air flow. On the contrary, the vortex is found to occur near the blade suction side once the rotor cage's rotary speed is higher than the tangential velocity of air flow. Inside the rotor cage, the axial velocity could not be disregarded and is largely determined by the distances between the measurement point and the exit.
基金supported by National Natural Science Foundation of China (Grant Nos. 51074012, 51204009)
文摘The suitable process parameters for a two-stage turbo air classifier are important for obtaining the ultrafine powder that has a narrow particle-size distribution, however little has been published internationally on the classification process for the two-stage turbo air classifier in series. The influence of the process parameters of a two-stage turbo air classifier in series on classification performance is empirically studied by using aluminum oxide powders as the experimental material. The experimental results show the following: 1) When the rotor cage rotary speed of the first-stage classifier is increased from 2 300 r/min to 2 500 r/min with a constant rotor cage rotary speed of the second-stage classifier, classification precision is increased from 0.64 to 0.67. However, in this case, the final ultrafine powder yield is decreased from 79% to 74%, which means the classification precision and the final ultrafine powder yield can be regulated through adjusting the rotor cage rotary speed of the first-stage classifier. 2) When the rotor cage rotary speed of the second-stage classifier is increased from 2 500 r/min to 3 100 r/min with a constant rotor cage rotary speed of the first-stage classifier, the cut size is decreased from 13.16 μm to 8.76 μm, which means the cut size of the ultrafine powder can be regulated through adjusting the rotor cage rotary speed of the second-stage classifier. 3) When the feeding speed is increased from 35 kg/h to 50 kg/h, the 'fish-hook' effect is strengthened, which makes the ultrafine powder yield decrease. 4) To weaken the 'fish-hook' effect, the equalization of the two-stage wind speeds or the combination of a high first-stage wind speed with a low second-stage wind speed should be selected. This empirical study provides a criterion of process parameter configurations for a two-stage or multi-stage classifier in series, which offers a theoretical basis for practical production.
文摘An air classifier is one of the main and effective devices in cement industry.In this study,a three-dimensional,steady and two-phase(solid-gas)computational fluid dynamics(CFD)simulation was performed to optimize the performance of this device in the Kerman Momtazan cement plant,Iran.After the validation of CFD results,the air flow field and air path lines between fixed blades were checked carefully and the non-uniformity in velocity distribution and the formation of vortex flows between the blades close to particle inlets were observed.The study tried to improve the device efficiency by changing the method of entering particles into the device,resulting in a reduction in air classifier electrical energy consumption(from 41 to 35(kW h)/t)and an increase in production rate(from 203 to 214 t/h).Additionally,the study investigated the effects of other modifiable operating conditions like rotary cage rotation speed,pressure difference,and inlet air temperature on the particle size distribution and classifier efficiency.The results showed that increasing the cage rotation speed decreased the product rate and the product particles mean diameter while increasing pressure difference or increasing temperature increased the product rate and the product particles mean diameter.It was concluded that these modifiable operating conditions can significantly affect the performance of the air classifier in the cement industry.