The AFM probe in tapping mode is a continuous process of energy dissipation,from moving away from to intermittent contact with the sample surfaces.At present,studies regarding the energy dissipation mechanism of this ...The AFM probe in tapping mode is a continuous process of energy dissipation,from moving away from to intermittent contact with the sample surfaces.At present,studies regarding the energy dissipation mechanism of this continuous process have only been reported sporadically,and there are no systematic explanations or experimental verifications of the energy dissipation mechanism in each stage of the continuous process.The quality factors can be used to characterize the energy dissipation in TM-AFM systems.In this study,the vibration model of the microcantilever beam was established,coupling the vibration and damping effects of the microcantilever beam.The quality factor of the vibrating microcantilever beam under damping was derived,and the air viscous damping when the probe is away from the sample and the air squeeze film damping when the probe is close to the sample were calculated.In addition,the mechanism of the damping effects of different shapes of probes at different tip–sample distances was analyzed.The accuracy of the theoretical simplified model was verified using both experimental and simulation methods.A clearer understanding of the kinetic characteristics and damping mechanism of the TM-AFM was achieved by examining the air damping dissipation mechanism of AFM probes in the tapping mode,which was very important for improving both the quality factor and the imaging quality of the TM-AFM system.This study’s research findings also provided theoretical references and experimental methods for the future study of the energy dissipation mechanism of micro-nano-electromechanical systems.展开更多
A differential equation that is generally effective for squeeze film air damping of perforated plate and non perforated plate as well as in MEMS devices is developed.For perforated plate,the thickness and the dimens...A differential equation that is generally effective for squeeze film air damping of perforated plate and non perforated plate as well as in MEMS devices is developed.For perforated plate,the thickness and the dimensions of the plate are not limited.With boundary conditions,pressure distribution and the damping force on the plate can be found by solving the differential equation.Analytical expressions for damping pressure and damping force of a long strip holeplate are presented with a finite thickness and a finite width.To the extreme conditions of very thin plate and very thin hole,the results are reduced to the corresponding results of the conventional Reynolds' equation.Thus, the effectiveness of the generalized differential equation is justified.Therefore,the generalized Reynolds' equation will be a useful tool of design for damping structures in MEMS.展开更多
A differential equation for calculating squeeze-film air damping in slotted plates is developed by modifying the Reynolds equation. A term is added to account for the effect of airflow through the slots on the air dam...A differential equation for calculating squeeze-film air damping in slotted plates is developed by modifying the Reynolds equation. A term is added to account for the effect of airflow through the slots on the air damping of the plate. The end effect of the airflow in the slots is also treated by substituting an effective channel length for the geometric channel length (i. e. the thickness of the plate)..The damping pressure distribution, damping force, and damping force coefficient of the slotted plates can be found by solving the equation under appropriate boundary conditions. With restrictions on the thickness and the lateral dimensions of the slotted plate removed,the equation provides a useful tool for analysing the squeeze-film air damping effect of slotted plates with finite thickness and finite lateral dimensions. For a typical slotted plate structure, the damping force coefficient obtained by this equation agrees well with that generated by ANSYS.展开更多
The nonlinear dynamics of the lateral micro-resonator including the air damping effect is researched. The air damping force is varied periodically during the resonator oscillating, and the air damp coefficient can not...The nonlinear dynamics of the lateral micro-resonator including the air damping effect is researched. The air damping force is varied periodically during the resonator oscillating, and the air damp coefficient can not be fixed as a constant. Therefore the linear dynamic analysis which used the constant air damping coefficient can not describe the actual dynamic characteristics of the mi-cro-resonator. The nonlinear dynamic model including the air damping force is established. On the base of Navier-Stokes equation and nonlinear dynamical equation, a coupled fluid-solid numerical simulation method is developed and demonstrates that damping force is a vital factor in micro-comb structures. Compared with existing experimental result, the nonlinear numerical value has quite good agreement with it. The differences of the amplitudes (peak) between the experimental data and the results by the linear model and the nonlinear model are 74.5% and 6% respectively. Nonlinear nu-merical value is more exact than linear value and the method can be applied in other mi-cro-electro-mechanical systeme (MEMS) structures to simulate the dynamic performance.展开更多
The squeeze-film air damping exists in a lot of micro-electronic-mechanical system (MEMS) devices unavoidably. The effects of air damping in traditional inertial switch with spring-mass system can be ignored for its l...The squeeze-film air damping exists in a lot of micro-electronic-mechanical system (MEMS) devices unavoidably. The effects of air damping in traditional inertial switch with spring-mass system can be ignored for its large volume and mass. But, many properties of MEMS switch, such as sensitivity, resolution and contact time, are affected by the air damping caused from the squeezed air film between two parallel plates moving relatively. Based on the conservation laws for mass and flux and the nonlinear Reynolds equation, the coefficient of squeeze-film damping was derived. The dynamic responses of the inertial switch with and without squeeze-film damping were simulated by using software ANSYS. The simulated results show that the sensitivity and contact time of the switch descend by about 5% and 15%, respectively, when the effects of squeeze-film damping are considered.展开更多
This paper studies the CoNbZr soft magnetic thin film by magnetic force microscopy (MFM). By measuring in atmosphere circumstance, the magnetic force images display some clear dark dots which are corresponding to th...This paper studies the CoNbZr soft magnetic thin film by magnetic force microscopy (MFM). By measuring in atmosphere circumstance, the magnetic force images display some clear dark dots which are corresponding to the clusters in the topography images welL Then the dark dots disappear in magnetic force images, scanning in high vacuum. This indicates that the dark dots are caused by air damping between the vibrating tip and the sample. An interpretation for the above observation is given.展开更多
The influence of outside inertial shock combined with RF signal voltages on the properties of a shunt capacitive MEMS switch encapsulated in a low vacuum environment is analyzed considering the damping of the air arou...The influence of outside inertial shock combined with RF signal voltages on the properties of a shunt capacitive MEMS switch encapsulated in a low vacuum environment is analyzed considering the damping of the air around the MEMS switch membrane. An analytical expression that approximately computes the displacement induced by outside shock is obtained. According to the expression, the minimum required mechanical stiffness constant of an MEMS switch beam in some maximum tolerated insertion loss condition and some external inertial shock environment or the insertion loss induced by external inertial shock can also be obtained. The influence is also illustrated with an RF MEMS capacitive switch example,which shows that outside environment factors have to be taken into account when designing RF MEMS capacitive switches working in low vacuum. While encapsulating RF MEMS switches in low vacuum diminishes the air damping and improves the switch speed and operation voltage,the performances of a switch is incident to being influenced by outside environment. This study is very useful for the optimized design of RF MEMS capacitive switches working in low vacuum.展开更多
基金the National Natural Science Foun-dation of China(Grant No.11572031).
文摘The AFM probe in tapping mode is a continuous process of energy dissipation,from moving away from to intermittent contact with the sample surfaces.At present,studies regarding the energy dissipation mechanism of this continuous process have only been reported sporadically,and there are no systematic explanations or experimental verifications of the energy dissipation mechanism in each stage of the continuous process.The quality factors can be used to characterize the energy dissipation in TM-AFM systems.In this study,the vibration model of the microcantilever beam was established,coupling the vibration and damping effects of the microcantilever beam.The quality factor of the vibrating microcantilever beam under damping was derived,and the air viscous damping when the probe is away from the sample and the air squeeze film damping when the probe is close to the sample were calculated.In addition,the mechanism of the damping effects of different shapes of probes at different tip–sample distances was analyzed.The accuracy of the theoretical simplified model was verified using both experimental and simulation methods.A clearer understanding of the kinetic characteristics and damping mechanism of the TM-AFM was achieved by examining the air damping dissipation mechanism of AFM probes in the tapping mode,which was very important for improving both the quality factor and the imaging quality of the TM-AFM system.This study’s research findings also provided theoretical references and experimental methods for the future study of the energy dissipation mechanism of micro-nano-electromechanical systems.
文摘A differential equation that is generally effective for squeeze film air damping of perforated plate and non perforated plate as well as in MEMS devices is developed.For perforated plate,the thickness and the dimensions of the plate are not limited.With boundary conditions,pressure distribution and the damping force on the plate can be found by solving the differential equation.Analytical expressions for damping pressure and damping force of a long strip holeplate are presented with a finite thickness and a finite width.To the extreme conditions of very thin plate and very thin hole,the results are reduced to the corresponding results of the conventional Reynolds' equation.Thus, the effectiveness of the generalized differential equation is justified.Therefore,the generalized Reynolds' equation will be a useful tool of design for damping structures in MEMS.
文摘A differential equation for calculating squeeze-film air damping in slotted plates is developed by modifying the Reynolds equation. A term is added to account for the effect of airflow through the slots on the air damping of the plate. The end effect of the airflow in the slots is also treated by substituting an effective channel length for the geometric channel length (i. e. the thickness of the plate)..The damping pressure distribution, damping force, and damping force coefficient of the slotted plates can be found by solving the equation under appropriate boundary conditions. With restrictions on the thickness and the lateral dimensions of the slotted plate removed,the equation provides a useful tool for analysing the squeeze-film air damping effect of slotted plates with finite thickness and finite lateral dimensions. For a typical slotted plate structure, the damping force coefficient obtained by this equation agrees well with that generated by ANSYS.
基金This project is supported by Shanghai Municipal Science and Technique Committee Foundation, China (No. 03QF14019, No. 0452nm023, No. AM0420).
文摘The nonlinear dynamics of the lateral micro-resonator including the air damping effect is researched. The air damping force is varied periodically during the resonator oscillating, and the air damp coefficient can not be fixed as a constant. Therefore the linear dynamic analysis which used the constant air damping coefficient can not describe the actual dynamic characteristics of the mi-cro-resonator. The nonlinear dynamic model including the air damping force is established. On the base of Navier-Stokes equation and nonlinear dynamical equation, a coupled fluid-solid numerical simulation method is developed and demonstrates that damping force is a vital factor in micro-comb structures. Compared with existing experimental result, the nonlinear numerical value has quite good agreement with it. The differences of the amplitudes (peak) between the experimental data and the results by the linear model and the nonlinear model are 74.5% and 6% respectively. Nonlinear nu-merical value is more exact than linear value and the method can be applied in other mi-cro-electro-mechanical systeme (MEMS) structures to simulate the dynamic performance.
文摘The squeeze-film air damping exists in a lot of micro-electronic-mechanical system (MEMS) devices unavoidably. The effects of air damping in traditional inertial switch with spring-mass system can be ignored for its large volume and mass. But, many properties of MEMS switch, such as sensitivity, resolution and contact time, are affected by the air damping caused from the squeezed air film between two parallel plates moving relatively. Based on the conservation laws for mass and flux and the nonlinear Reynolds equation, the coefficient of squeeze-film damping was derived. The dynamic responses of the inertial switch with and without squeeze-film damping were simulated by using software ANSYS. The simulated results show that the sensitivity and contact time of the switch descend by about 5% and 15%, respectively, when the effects of squeeze-film damping are considered.
基金Supported by the National Key Fundamental Research Program of China (No. 51310Z07)
文摘This paper studies the CoNbZr soft magnetic thin film by magnetic force microscopy (MFM). By measuring in atmosphere circumstance, the magnetic force images display some clear dark dots which are corresponding to the clusters in the topography images welL Then the dark dots disappear in magnetic force images, scanning in high vacuum. This indicates that the dark dots are caused by air damping between the vibrating tip and the sample. An interpretation for the above observation is given.
文摘The influence of outside inertial shock combined with RF signal voltages on the properties of a shunt capacitive MEMS switch encapsulated in a low vacuum environment is analyzed considering the damping of the air around the MEMS switch membrane. An analytical expression that approximately computes the displacement induced by outside shock is obtained. According to the expression, the minimum required mechanical stiffness constant of an MEMS switch beam in some maximum tolerated insertion loss condition and some external inertial shock environment or the insertion loss induced by external inertial shock can also be obtained. The influence is also illustrated with an RF MEMS capacitive switch example,which shows that outside environment factors have to be taken into account when designing RF MEMS capacitive switches working in low vacuum. While encapsulating RF MEMS switches in low vacuum diminishes the air damping and improves the switch speed and operation voltage,the performances of a switch is incident to being influenced by outside environment. This study is very useful for the optimized design of RF MEMS capacitive switches working in low vacuum.