Direct air capture(DAC)has attracted increasing interest and investment over the past few years.There are a fast-growing number of companies that entered the field and demonstrated DAC carbon removal setups and potent...Direct air capture(DAC)has attracted increasing interest and investment over the past few years.There are a fast-growing number of companies that entered the field and demonstrated DAC carbon removal setups and potential.However,current DAC methods are still based on solid absorbents or alkali solutions approaches which have low capture efficiency and low energy efficiency.This highlight proposed a promising CO_(2) capture technology,an electric energy driven closed-loop system for the direct removal of CO_(2) from ambient air which are based on two individual technologies:Polyam-N-Cu hybrid system promoted CO_(2) capture with ocean as anthropogenic CO_(2) sink and a chloride-mediated electrochemical pH swing system to remove CO_(2) from oceanwater.展开更多
This study investigates the aerodynamic performance of the NACA 633-421 airfoil and the effectiveness and feasibility of intermittent disturbance flow control methods on laminar separation bubbles(LSBs).It is found th...This study investigates the aerodynamic performance of the NACA 633-421 airfoil and the effectiveness and feasibility of intermittent disturbance flow control methods on laminar separation bubbles(LSBs).It is found that the average velocity and influence range of the synthetic jet actuator increase with the increasing of driving frequency and driving amplitude.LSB occurs at Re=1.0×10^(5),and ruptures atα=6°.But with intermittent disturbance control,the stall angle of attack(AoA)increases while significantly reducing drag.Research shows that although certain disturbance cannot fully recover from LSB stall,decreasing driving amplitude partially restores wing aerodynamic performance,more effectively than increasing driving amplitude.展开更多
Solvent extraction,a separation and purification technology,is crucial in critical metal metallurgy.Organic solvents commonly used in solvent extraction exhibit disadvantages,such as high volatility,high toxicity,and ...Solvent extraction,a separation and purification technology,is crucial in critical metal metallurgy.Organic solvents commonly used in solvent extraction exhibit disadvantages,such as high volatility,high toxicity,and flammability,causing a spectrum of hazards to human health and environmental safety.Neoteric solvents have been recognized as potential alternatives to these harmful organic solvents.In the past two decades,several neoteric solvents have been proposed,including ionic liquids(ILs)and deep eutectic solvents(DESs).DESs have gradually become the focus of green solvents owing to several advantages,namely,low toxicity,degradability,and low cost.In this critical review,their classification,formation mechanisms,preparation methods,characterization technologies,and special physicochemical properties based on the most recent advancements in research have been systematically described.Subsequently,the major separation and purification applications of DESs in critical metal metallurgy were comprehensively summarized.Finally,future opportunities and challenges of DESs were explored in the current research area.In conclusion,this review provides valuable insights for improving our overall understanding of DESs,and it holds important potential for expanding separation and purification applications in critical metal metallurgy.展开更多
Concerns about air quality in dental clinics where aerosol generation during procedures poses significant health risks,have prompted investigations on advanced disinfection technologies.This editorial describes the st...Concerns about air quality in dental clinics where aerosol generation during procedures poses significant health risks,have prompted investigations on advanced disinfection technologies.This editorial describes the strengths and limitations of ventilation and aerosol control measures in dental offices,especially with respect to the use of graphene nanocomposites.The potential of graphene nanocomposites as an innovative solution to aerosol-associated health risks is examined in this review due to the unique properties of graphene(e.g.,high con-ductivity,mechanical strength,and antimicrobial activity).These properties have produced promising results in various fields,but the application of graphene in dentistry remains unexplored.The recent study by Ju et al which was published in World Journal of Clinical Cases evaluated the effectiveness of graphene-based air disinfection systems in dental clinics.The study demonstrated that graphene-based disinfection techniques produced significant reductions in suspended particulate matter and bacterial colony counts,when co-mpared with traditional methods.Despite these positive results,challenges such as material saturation,frequency of filter replacement,and associated costs must be addressed before widespread adoption of graphene-based disinfection techniques in clinical practice.Therefore,there is need for further research on material structure optimization,long-term safety evaluations,and broader clinical applications,in order to maximize their positive impact on public health.展开更多
This manuscript features the promising findings of a study conducted by Ju et al,who used graphene nanocomposites for air disinfection in dental clinics.Their study demonstrated that,compared with conventional filters...This manuscript features the promising findings of a study conducted by Ju et al,who used graphene nanocomposites for air disinfection in dental clinics.Their study demonstrated that,compared with conventional filters,graphene nanocom-posites substantially improved air quality and reduced microbial contamination.This manuscript highlights the innovative application of graphene materials,emphasizing their potential to enhance dental clinic environments by minimizing secondary pollution.On the basis of the unique antimicrobial properties of gra-phene and the original study’s rigorous methodology,we recommend using gra-phene nanocomposites in clinical settings to control airborne infections.展开更多
The process of an O2//CO2 power plant based on chemical looping air separation (CLAS) is modeled using the Aspen Plus software. The operating parameters and power consumption of the CLAS unit are analyzed. The CLAS ...The process of an O2//CO2 power plant based on chemical looping air separation (CLAS) is modeled using the Aspen Plus software. The operating parameters and power consumption of the CLAS unit are analyzed. The CLAS system, thermal power generation system and flue gas cooling and compression unit (CCU) are coupled and optimized, and the temperature and flow of the flue gas extraction are determined. The results indicate that the net plant efficiency of CLAS O2/CO2 power plant is 39.2%, which is only 3.54% lower than that of the conventional power plants without carbon capture. However, the O2/CO2 power plant based on cryogenic air separation technology brings 8% to 10% decrease in the net plant efficiency. By optimizations, the net plant efficiency increases by 1.65%. The energy consumption of the CCU accounts for 59.7% and the pump accounts for 27.1%. The oxygen concentration from the chemical looping air separation unit is 12.2%.展开更多
The flow field of pulsing air separation is normally in an unsteady turbulence state.With the application of the basic principles of multiphase turbulent flows,we established the dynamical computational model,which sh...The flow field of pulsing air separation is normally in an unsteady turbulence state.With the application of the basic principles of multiphase turbulent flows,we established the dynamical computational model,which shows a remarkable variation of the unstable pulsing air flow field.CFD(computational fluid dynamics) was used to conduct the numerical simulation of the actual geometric model of the classifier.The inside velocity of the flowing fields was analyzed later.The simulation results indicate that the designed structure of the active pulsing air classifier provided a favorable environment for the separation of the particles with different physical characters by density.We shot the movement behaviors of the typical tracer grains in the active pulsing flow field using a high speed dynamic camera.The displacement and velocity curves of the particles in the continuous impulse periods were then analyzed.The experimental results indicate that the effective separation by density of the particles with the same settling velocity and different ranges of the density and particle size can be achieved in the active pulsing airflow field.The experimental results provide an agreement with the simulation results.展开更多
In this work,a six-bed pressure swing adsorption(PSA)process was investigated to produce medical oxygen from air,which uses the combination of six-way rotating distribution valve and PSA and has the main advantage of ...In this work,a six-bed pressure swing adsorption(PSA)process was investigated to produce medical oxygen from air,which uses the combination of six-way rotating distribution valve and PSA and has the main advantage of effectively saving space compared to the traditional two-bed or four-bed PSA process and can obtain greater productivity.The mathematical model of adsorption beds was developed based on the separation mechanism and the interaction among different equipment.Moreover,a pilot-scale device has been constructed to verify the accuracy of mathematical model by experiment.The oxygen product conformed to the medical standard(>93%(vol))with a recovery of over 57%.Some related parameters were also discussed in detail,such as step time,ratio of length to the diameter,flow rate of product.展开更多
Oxygen diffusion and oxygen selective adsorption properties of rare earths material YBa_2Cu_3O_(7-x) (YBCO) were investigated by thermogravimetric, oxygen static adsorption and selectivity adsorption experiments. The ...Oxygen diffusion and oxygen selective adsorption properties of rare earths material YBa_2Cu_3O_(7-x) (YBCO) were investigated by thermogravimetric, oxygen static adsorption and selectivity adsorption experiments. The results show that YBCO is a very good deoxidizing material. The oxygen desorption of YBCO begins remarkably at about 400 ℃, mass loss can arrive at 1.2% of its original quantity at 800 ℃. Oxygen can be completely absorbed back into the sample again when temperature descends to 400 ℃. The oxygen adsorption selectivity, reproducibility and oxygen adsorption under very low oxygen partial pressure make the material desirable for air separation and gas purification. High purity nitrogen gas was produced with the YBCO molecular sieves in the air separation and gas purification experiments. 0.017 m^3 of high purity nitrogen (>99.9999%) can be obtained with 1 kg YBCO molecular sieve in one cycle. As a deoxidant, an obvious advantage of YBCO is that no hydrogen is needed in its applications.展开更多
To research a novel technology for dry coarse coal slime beneficiation and extend its application, active pulsing air separation technology was investigated by DEM-CFD coupling simulation approach. The results show th...To research a novel technology for dry coarse coal slime beneficiation and extend its application, active pulsing air separation technology was investigated by DEM-CFD coupling simulation approach. The results show that the ash content of feed is reduced by 10% 15% and the organic efficiency is up to 91.78% by using the active pulsing air separation technology. The gas solid flow in the active pulsing air classifier was simulated. Meanwhile, the characteristics of particle motion and the separation process of different particles were analyzed, and the mechanical structure of the classifier was also modified to achieve high separation efficiency. Therefore, a novel high-efficiency dry beneficiation technique was advanced for coarse coal slime.展开更多
The unsteady aerodynamic loads generated by the thin-shell object separating from aircraft affects flying safety.To investigate the loads,a method combining numerical simulation and experiment is proposed.Firstly,the ...The unsteady aerodynamic loads generated by the thin-shell object separating from aircraft affects flying safety.To investigate the loads,a method combining numerical simulation and experiment is proposed.Firstly,the motional tendency of the thin-shell object separating from aircraft is calculated,and then the high-speed air blowing test on ground is designed.Thereafter,the external store is employed to avoid colliding with the thin-shell object in air.Finally,the hanging and flight test is conducted by a high-speed unmanned aerial vehicle(UAV),and the feasibility of the thin-shell object separating from aircraft at high speed is proved.Consequently,the separating problem of a thin-shell object with an unconventional aerodynamic configuration is solved,and the collisions with aircraft is prevented.展开更多
A detailed investigation of a thermodynamic process in a structured packing distillation column is of great impor- tance in prediction of process efficiency. In order to keep the simplicity of an equilibrium stage mod...A detailed investigation of a thermodynamic process in a structured packing distillation column is of great impor- tance in prediction of process efficiency. In order to keep the simplicity of an equilibrium stage model and the accu- racy of a non-equilibrium stage model, a hybrid model is developed to predict the structured packing column in cryogenic air separation. A general solution process for the equilibrium stage model is developed to solve the set of equations of the hybrid model, in which a separation efficiency function is introduced to obtain the resulting tri-diagonal matrix and its solution by the Thomas algorithm. As an example, the algorithm is applied to analyze an upper column of a cryogenic air separation plant with the capacity of 17000 m3·h-1. Rigorous simulations are conducted using Aspen RATEFRAC module to validate the approach. The temperature and composition distributions are in a good agreement with the two methods. The effects of inlet/outlet position and flow rate on the temperature and composition distributions in the column are analyzed. The results demonstrate that the hybrid model and the solution algorithms are effective in analvzin~ the distillation process for a a cryogenic structured packing column.展开更多
Triheptyl cellulose/ethyl cellulose(3/97)binary blend membranes were prepared from tetrahydrofuran,chloroform and dichloromethane solutions and their air separation capabit- ities were studied at different temperature...Triheptyl cellulose/ethyl cellulose(3/97)binary blend membranes were prepared from tetrahydrofuran,chloroform and dichloromethane solutions and their air separation capabit- ities were studied at different temperatures.With increasing temperature from 25 to 85℃,the flux QOEA of O_2-enriched air(OEA),O_2 permselectivity and the O_2 concentration Yo_2 in the OEA all increase.The membranes show a unique trend in their Yo_2~QOEA relationship,that is,the air separation capability increases simultaneously with the OEA permeation capability.The magnitudes of QOEA and Yo_2 for 17μm-thick membrane after the testg time of 36hours at 70℃ are 5×10^(-4)cm^3 (STP)/s·cm^2 and 37.6%,respectively.The air separation capability depends slightly on membrane forming solvents.展开更多
Purpose: Optimal pain management strategies for patients undergoing component separation hernia repair are not defined. Epidural analgesia (EA) has been shown to decrease pulmonary complications and duration of ileus ...Purpose: Optimal pain management strategies for patients undergoing component separation hernia repair are not defined. Epidural analgesia (EA) has been shown to decrease pulmonary complications and duration of ileus and to improve pain control in other patient populations. In this study we examined outcomes of patients receiving EA after separation of components (SOC). Methods: After obtaining IRB approval, a retrospective review was performed of patients undergoing ventral hernia repair with SOC from January 2006 to October 2010 at the University of Kentucky. Patients were identified from hospital operative records. Pre-operative patient characteristics and operative data were obtained from the medical record. Information was collected relating to use of EA, complications, and length of hospitalization (LOS). Post-operative outcomes were compared between those that had epidurals and those that did not. Results: One hundred seventeen patients were identified that underwent SOC, 34 of whom had EA. These two groups were similar in relation to age, BMI, and co-morbidities. Three patients in the epidural group had complications limiting epidural duration—two with hypotension and one with refractory pruritus. There was no difference in pneumonia, deep vein thrombosis (DVT), wound infection, urinary tract infection (UTI), recurrence, or mortality (Table 1). There was an increase in LOS (6.68 vs. 6.06 days, p 0.01) in patients with EA. Conclusions: The use of EA results in increased LOS in patients undergoing SOC. EA associated morbidity occurs infrequently. The incidence of post-operative complications is unaffected by EA. Further studies are needed to delineate the benefit of EA in this patient population.展开更多
Onboard air separation devices,based on hollow fiber membranes,are traditionally used for the optimization of aircraft fuel tank inerting systems.In the present study,a set of tests have been designed and executed to ...Onboard air separation devices,based on hollow fiber membranes,are traditionally used for the optimization of aircraft fuel tank inerting systems.In the present study,a set of tests have been designed and executed to assess the air separation performances of these systems for different air inlet temperatures(70°C∼110°C),inlet pressures(0.1∼0.4 MPa),volume flow rates of nitrogen-enriched air(NEA)(30∼120 L/min)and flight altitudes(1.5∼18 km).In particular,the temperature,pressure,volume flow rate,and oxygen concentration of air,NEA and oxygen-enriched air(OEA)have been measured.The experimental results show that the oxygen concentration of NEA,air separation coefficient,and nitrogen utilization coefficient decrease with the rising of air inlet temperature,air inlet pressure,and flight altitude.The effect of air inlet pressure on the above three parameters is significant,while the influence of air inlet temperature and flight altitude is relatively small.展开更多
Baosteel' s No. 8 air separation unit(ASU) is the first domestically-integrated 60 000 m^3/h ASU. This paper describes the mechanical equipment, the design and the configuration characteristics of this unit. The po...Baosteel' s No. 8 air separation unit(ASU) is the first domestically-integrated 60 000 m^3/h ASU. This paper describes the mechanical equipment, the design and the configuration characteristics of this unit. The potential failure modes of the mechanical devices are deduced via analyses on the failure history of similar devices in other ASUs. Finally, this paper also brings up suggestions on daily maintenance, overhaul and purchases of spare parts.展开更多
Baosteel's 60000 m……3/h air separation unit (ASU), the first domestically-integrated unit of its class, is a milestone in the Chinese air separation industry. In this paper,the process characteristics of the unit...Baosteel's 60000 m……3/h air separation unit (ASU), the first domestically-integrated unit of its class, is a milestone in the Chinese air separation industry. In this paper,the process characteristics of the unit and the application of the original techniques are expatiated. Some difficulties in the process design, the risk control, the quality control, the control system integration and the system commissioning are analyzed and appraised. The mode of the project integration and innovation, the cooperation among industries and the user-orientated project management mode are introduced. Finally,the successful experiences in innovation are summarized with the focus on the integration of the project.展开更多
This paper introduces the process flow, technical parameters and relevant features of Baosteel's No. 8 air separation unit (ASU) with a capacity of 60000m^3/h. It summarizes the commissioning work, which includes t...This paper introduces the process flow, technical parameters and relevant features of Baosteel's No. 8 air separation unit (ASU) with a capacity of 60000m^3/h. It summarizes the commissioning work, which includes the adjustment of the air compressor,the system's naked cooling,the precooling system and the operation adjustment. It also provides detailed analyses on some failures which occurred in the commissioning. Through the modification of the design and the interlocks, the tripping probability of the air compressor was greatly reduced. Through the heating of the system and the control of the water cooler's nitrogen flow,the overproof content of carbon dioxide and fluctuation of oxygen flow were avoided. Nitrogen-block in the argon system was eliminated by the precise control of the argon rectification flow and argon content. All these solutions have been proved to be effective by practice.展开更多
The first domestically-integrated large-scale air separation unit (ASU) with a capacity of 60 000 m^3/h was successfully built and put into operation at Baosteel. Compared with the electrical design of the imported ...The first domestically-integrated large-scale air separation unit (ASU) with a capacity of 60 000 m^3/h was successfully built and put into operation at Baosteel. Compared with the electrical design of the imported equipment of the same type,this ASU has an electrical protection interlink that is independent from the distribution control system (DCS). With the design idea of simplicity, the ASU features a simplified configuration and an audio alarm system for electrical failures. It helps reduce the failure rate of the electrical equipment and detect failures quickly and accurately. It will effectively enhance safe and stabilized production. The ASU can not only reduce the cost of investment, but also ensure a smooth and stable running of the whole electrical equipment. This study focuses on the experience and understanding of the unit design and commissioning.展开更多
Based on the practice of Baosteel' s 60000 m3/h air separation unit (ASU) ,which is the first domestically- integrated unit of such a scale, this paper studies the principles of type selection of the distribution c...Based on the practice of Baosteel' s 60000 m3/h air separation unit (ASU) ,which is the first domestically- integrated unit of such a scale, this paper studies the principles of type selection of the distribution control system (DCS). It discusses the design of the unit's control system,which involves a compressor system,a purification system (molecular sieving), a turbo expansion system and an air separation system. The final part of the paper discusses the maintenance and future development of the ASU control system at Baosteel.展开更多
文摘Direct air capture(DAC)has attracted increasing interest and investment over the past few years.There are a fast-growing number of companies that entered the field and demonstrated DAC carbon removal setups and potential.However,current DAC methods are still based on solid absorbents or alkali solutions approaches which have low capture efficiency and low energy efficiency.This highlight proposed a promising CO_(2) capture technology,an electric energy driven closed-loop system for the direct removal of CO_(2) from ambient air which are based on two individual technologies:Polyam-N-Cu hybrid system promoted CO_(2) capture with ocean as anthropogenic CO_(2) sink and a chloride-mediated electrochemical pH swing system to remove CO_(2) from oceanwater.
文摘This study investigates the aerodynamic performance of the NACA 633-421 airfoil and the effectiveness and feasibility of intermittent disturbance flow control methods on laminar separation bubbles(LSBs).It is found that the average velocity and influence range of the synthetic jet actuator increase with the increasing of driving frequency and driving amplitude.LSB occurs at Re=1.0×10^(5),and ruptures atα=6°.But with intermittent disturbance control,the stall angle of attack(AoA)increases while significantly reducing drag.Research shows that although certain disturbance cannot fully recover from LSB stall,decreasing driving amplitude partially restores wing aerodynamic performance,more effectively than increasing driving amplitude.
基金financially supported by the Original Exploration Project of the National Natural Science Foundation of China(No.52150079)the National Natural Science Foundation of China(Nos.U22A20130,U2004215,and 51974280)+1 种基金the Natural Science Foundation of Henan Province of China(No.232300421196)the Project of Zhongyuan Critical Metals Laboratory of China(Nos.GJJSGFYQ202304,GJJSGFJQ202306,GJJSGFYQ202323,GJJSGFYQ202308,and GJJSGFYQ202307)。
文摘Solvent extraction,a separation and purification technology,is crucial in critical metal metallurgy.Organic solvents commonly used in solvent extraction exhibit disadvantages,such as high volatility,high toxicity,and flammability,causing a spectrum of hazards to human health and environmental safety.Neoteric solvents have been recognized as potential alternatives to these harmful organic solvents.In the past two decades,several neoteric solvents have been proposed,including ionic liquids(ILs)and deep eutectic solvents(DESs).DESs have gradually become the focus of green solvents owing to several advantages,namely,low toxicity,degradability,and low cost.In this critical review,their classification,formation mechanisms,preparation methods,characterization technologies,and special physicochemical properties based on the most recent advancements in research have been systematically described.Subsequently,the major separation and purification applications of DESs in critical metal metallurgy were comprehensively summarized.Finally,future opportunities and challenges of DESs were explored in the current research area.In conclusion,this review provides valuable insights for improving our overall understanding of DESs,and it holds important potential for expanding separation and purification applications in critical metal metallurgy.
文摘Concerns about air quality in dental clinics where aerosol generation during procedures poses significant health risks,have prompted investigations on advanced disinfection technologies.This editorial describes the strengths and limitations of ventilation and aerosol control measures in dental offices,especially with respect to the use of graphene nanocomposites.The potential of graphene nanocomposites as an innovative solution to aerosol-associated health risks is examined in this review due to the unique properties of graphene(e.g.,high con-ductivity,mechanical strength,and antimicrobial activity).These properties have produced promising results in various fields,but the application of graphene in dentistry remains unexplored.The recent study by Ju et al which was published in World Journal of Clinical Cases evaluated the effectiveness of graphene-based air disinfection systems in dental clinics.The study demonstrated that graphene-based disinfection techniques produced significant reductions in suspended particulate matter and bacterial colony counts,when co-mpared with traditional methods.Despite these positive results,challenges such as material saturation,frequency of filter replacement,and associated costs must be addressed before widespread adoption of graphene-based disinfection techniques in clinical practice.Therefore,there is need for further research on material structure optimization,long-term safety evaluations,and broader clinical applications,in order to maximize their positive impact on public health.
文摘This manuscript features the promising findings of a study conducted by Ju et al,who used graphene nanocomposites for air disinfection in dental clinics.Their study demonstrated that,compared with conventional filters,graphene nanocom-posites substantially improved air quality and reduced microbial contamination.This manuscript highlights the innovative application of graphene materials,emphasizing their potential to enhance dental clinic environments by minimizing secondary pollution.On the basis of the unique antimicrobial properties of gra-phene and the original study’s rigorous methodology,we recommend using gra-phene nanocomposites in clinical settings to control airborne infections.
基金The National High Technology Research and Development Program of China(863 Program)(No.2012AA051801)the National Natural Science Foundation of China(No.51176033)
文摘The process of an O2//CO2 power plant based on chemical looping air separation (CLAS) is modeled using the Aspen Plus software. The operating parameters and power consumption of the CLAS unit are analyzed. The CLAS system, thermal power generation system and flue gas cooling and compression unit (CCU) are coupled and optimized, and the temperature and flow of the flue gas extraction are determined. The results indicate that the net plant efficiency of CLAS O2/CO2 power plant is 39.2%, which is only 3.54% lower than that of the conventional power plants without carbon capture. However, the O2/CO2 power plant based on cryogenic air separation technology brings 8% to 10% decrease in the net plant efficiency. By optimizations, the net plant efficiency increases by 1.65%. The energy consumption of the CCU accounts for 59.7% and the pump accounts for 27.1%. The oxygen concentration from the chemical looping air separation unit is 12.2%.
基金the financial support provided by the National Natural Science Foundation of China (No.51074156)the Natural Science Foundation of China for InnovativeResearch Group (No. 50921002)+1 种基金the Natural Science Foundation of Jiangsu Province of China (No. BK2010002)the Fundamental Research Funds for the Central Universities (No. 2010ZDP01A06)
文摘The flow field of pulsing air separation is normally in an unsteady turbulence state.With the application of the basic principles of multiphase turbulent flows,we established the dynamical computational model,which shows a remarkable variation of the unstable pulsing air flow field.CFD(computational fluid dynamics) was used to conduct the numerical simulation of the actual geometric model of the classifier.The inside velocity of the flowing fields was analyzed later.The simulation results indicate that the designed structure of the active pulsing air classifier provided a favorable environment for the separation of the particles with different physical characters by density.We shot the movement behaviors of the typical tracer grains in the active pulsing flow field using a high speed dynamic camera.The displacement and velocity curves of the particles in the continuous impulse periods were then analyzed.The experimental results indicate that the effective separation by density of the particles with the same settling velocity and different ranges of the density and particle size can be achieved in the active pulsing airflow field.The experimental results provide an agreement with the simulation results.
基金supported by Major military logistics research pro-jects(AWS13Z006)National Key Research and Development program of China(2017YFC0806404).
文摘In this work,a six-bed pressure swing adsorption(PSA)process was investigated to produce medical oxygen from air,which uses the combination of six-way rotating distribution valve and PSA and has the main advantage of effectively saving space compared to the traditional two-bed or four-bed PSA process and can obtain greater productivity.The mathematical model of adsorption beds was developed based on the separation mechanism and the interaction among different equipment.Moreover,a pilot-scale device has been constructed to verify the accuracy of mathematical model by experiment.The oxygen product conformed to the medical standard(>93%(vol))with a recovery of over 57%.Some related parameters were also discussed in detail,such as step time,ratio of length to the diameter,flow rate of product.
基金Project supported by the Science and Technology of Henan Province (991110343)
文摘Oxygen diffusion and oxygen selective adsorption properties of rare earths material YBa_2Cu_3O_(7-x) (YBCO) were investigated by thermogravimetric, oxygen static adsorption and selectivity adsorption experiments. The results show that YBCO is a very good deoxidizing material. The oxygen desorption of YBCO begins remarkably at about 400 ℃, mass loss can arrive at 1.2% of its original quantity at 800 ℃. Oxygen can be completely absorbed back into the sample again when temperature descends to 400 ℃. The oxygen adsorption selectivity, reproducibility and oxygen adsorption under very low oxygen partial pressure make the material desirable for air separation and gas purification. High purity nitrogen gas was produced with the YBCO molecular sieves in the air separation and gas purification experiments. 0.017 m^3 of high purity nitrogen (>99.9999%) can be obtained with 1 kg YBCO molecular sieve in one cycle. As a deoxidant, an obvious advantage of YBCO is that no hydrogen is needed in its applications.
基金Projects(51221462,51134022,51074156)supported by the National Natural Science Foundation of ChinaProject(2012CB214904)supported by the National Basic Research Program of ChinaProject(20120095130001)supported by Specialized Research Fund for the Doctoral Program of Higher Education,China
文摘To research a novel technology for dry coarse coal slime beneficiation and extend its application, active pulsing air separation technology was investigated by DEM-CFD coupling simulation approach. The results show that the ash content of feed is reduced by 10% 15% and the organic efficiency is up to 91.78% by using the active pulsing air separation technology. The gas solid flow in the active pulsing air classifier was simulated. Meanwhile, the characteristics of particle motion and the separation process of different particles were analyzed, and the mechanical structure of the classifier was also modified to achieve high separation efficiency. Therefore, a novel high-efficiency dry beneficiation technique was advanced for coarse coal slime.
基金supported by the Fundamental Research Funds for the Central Universities(No.XZA14027)
文摘The unsteady aerodynamic loads generated by the thin-shell object separating from aircraft affects flying safety.To investigate the loads,a method combining numerical simulation and experiment is proposed.Firstly,the motional tendency of the thin-shell object separating from aircraft is calculated,and then the high-speed air blowing test on ground is designed.Thereafter,the external store is employed to avoid colliding with the thin-shell object in air.Finally,the hanging and flight test is conducted by a high-speed unmanned aerial vehicle(UAV),and the feasibility of the thin-shell object separating from aircraft at high speed is proved.Consequently,the separating problem of a thin-shell object with an unconventional aerodynamic configuration is solved,and the collisions with aircraft is prevented.
基金Supported by the Major State Basic Research Development Program of China(2011CB706501)the National Natural Science Foundation of China(51276157)
文摘A detailed investigation of a thermodynamic process in a structured packing distillation column is of great impor- tance in prediction of process efficiency. In order to keep the simplicity of an equilibrium stage model and the accu- racy of a non-equilibrium stage model, a hybrid model is developed to predict the structured packing column in cryogenic air separation. A general solution process for the equilibrium stage model is developed to solve the set of equations of the hybrid model, in which a separation efficiency function is introduced to obtain the resulting tri-diagonal matrix and its solution by the Thomas algorithm. As an example, the algorithm is applied to analyze an upper column of a cryogenic air separation plant with the capacity of 17000 m3·h-1. Rigorous simulations are conducted using Aspen RATEFRAC module to validate the approach. The temperature and composition distributions are in a good agreement with the two methods. The effects of inlet/outlet position and flow rate on the temperature and composition distributions in the column are analyzed. The results demonstrate that the hybrid model and the solution algorithms are effective in analvzin~ the distillation process for a a cryogenic structured packing column.
文摘Triheptyl cellulose/ethyl cellulose(3/97)binary blend membranes were prepared from tetrahydrofuran,chloroform and dichloromethane solutions and their air separation capabit- ities were studied at different temperatures.With increasing temperature from 25 to 85℃,the flux QOEA of O_2-enriched air(OEA),O_2 permselectivity and the O_2 concentration Yo_2 in the OEA all increase.The membranes show a unique trend in their Yo_2~QOEA relationship,that is,the air separation capability increases simultaneously with the OEA permeation capability.The magnitudes of QOEA and Yo_2 for 17μm-thick membrane after the testg time of 36hours at 70℃ are 5×10^(-4)cm^3 (STP)/s·cm^2 and 37.6%,respectively.The air separation capability depends slightly on membrane forming solvents.
文摘Purpose: Optimal pain management strategies for patients undergoing component separation hernia repair are not defined. Epidural analgesia (EA) has been shown to decrease pulmonary complications and duration of ileus and to improve pain control in other patient populations. In this study we examined outcomes of patients receiving EA after separation of components (SOC). Methods: After obtaining IRB approval, a retrospective review was performed of patients undergoing ventral hernia repair with SOC from January 2006 to October 2010 at the University of Kentucky. Patients were identified from hospital operative records. Pre-operative patient characteristics and operative data were obtained from the medical record. Information was collected relating to use of EA, complications, and length of hospitalization (LOS). Post-operative outcomes were compared between those that had epidurals and those that did not. Results: One hundred seventeen patients were identified that underwent SOC, 34 of whom had EA. These two groups were similar in relation to age, BMI, and co-morbidities. Three patients in the epidural group had complications limiting epidural duration—two with hypotension and one with refractory pruritus. There was no difference in pneumonia, deep vein thrombosis (DVT), wound infection, urinary tract infection (UTI), recurrence, or mortality (Table 1). There was an increase in LOS (6.68 vs. 6.06 days, p 0.01) in patients with EA. Conclusions: The use of EA results in increased LOS in patients undergoing SOC. EA associated morbidity occurs infrequently. The incidence of post-operative complications is unaffected by EA. Further studies are needed to delineate the benefit of EA in this patient population.
基金This project is supported by the Fund of Natural Science Project of Hunan Province,China,with the Item No.2020JJ5393Education Department of Hunan Province,China,with the Item No.18C0735.
文摘Onboard air separation devices,based on hollow fiber membranes,are traditionally used for the optimization of aircraft fuel tank inerting systems.In the present study,a set of tests have been designed and executed to assess the air separation performances of these systems for different air inlet temperatures(70°C∼110°C),inlet pressures(0.1∼0.4 MPa),volume flow rates of nitrogen-enriched air(NEA)(30∼120 L/min)and flight altitudes(1.5∼18 km).In particular,the temperature,pressure,volume flow rate,and oxygen concentration of air,NEA and oxygen-enriched air(OEA)have been measured.The experimental results show that the oxygen concentration of NEA,air separation coefficient,and nitrogen utilization coefficient decrease with the rising of air inlet temperature,air inlet pressure,and flight altitude.The effect of air inlet pressure on the above three parameters is significant,while the influence of air inlet temperature and flight altitude is relatively small.
文摘Baosteel' s No. 8 air separation unit(ASU) is the first domestically-integrated 60 000 m^3/h ASU. This paper describes the mechanical equipment, the design and the configuration characteristics of this unit. The potential failure modes of the mechanical devices are deduced via analyses on the failure history of similar devices in other ASUs. Finally, this paper also brings up suggestions on daily maintenance, overhaul and purchases of spare parts.
文摘Baosteel's 60000 m……3/h air separation unit (ASU), the first domestically-integrated unit of its class, is a milestone in the Chinese air separation industry. In this paper,the process characteristics of the unit and the application of the original techniques are expatiated. Some difficulties in the process design, the risk control, the quality control, the control system integration and the system commissioning are analyzed and appraised. The mode of the project integration and innovation, the cooperation among industries and the user-orientated project management mode are introduced. Finally,the successful experiences in innovation are summarized with the focus on the integration of the project.
文摘This paper introduces the process flow, technical parameters and relevant features of Baosteel's No. 8 air separation unit (ASU) with a capacity of 60000m^3/h. It summarizes the commissioning work, which includes the adjustment of the air compressor,the system's naked cooling,the precooling system and the operation adjustment. It also provides detailed analyses on some failures which occurred in the commissioning. Through the modification of the design and the interlocks, the tripping probability of the air compressor was greatly reduced. Through the heating of the system and the control of the water cooler's nitrogen flow,the overproof content of carbon dioxide and fluctuation of oxygen flow were avoided. Nitrogen-block in the argon system was eliminated by the precise control of the argon rectification flow and argon content. All these solutions have been proved to be effective by practice.
文摘The first domestically-integrated large-scale air separation unit (ASU) with a capacity of 60 000 m^3/h was successfully built and put into operation at Baosteel. Compared with the electrical design of the imported equipment of the same type,this ASU has an electrical protection interlink that is independent from the distribution control system (DCS). With the design idea of simplicity, the ASU features a simplified configuration and an audio alarm system for electrical failures. It helps reduce the failure rate of the electrical equipment and detect failures quickly and accurately. It will effectively enhance safe and stabilized production. The ASU can not only reduce the cost of investment, but also ensure a smooth and stable running of the whole electrical equipment. This study focuses on the experience and understanding of the unit design and commissioning.
文摘Based on the practice of Baosteel' s 60000 m3/h air separation unit (ASU) ,which is the first domestically- integrated unit of such a scale, this paper studies the principles of type selection of the distribution control system (DCS). It discusses the design of the unit's control system,which involves a compressor system,a purification system (molecular sieving), a turbo expansion system and an air separation system. The final part of the paper discusses the maintenance and future development of the ASU control system at Baosteel.