Changes in ground surface thermal regimes play a vital role in surface and subsurface hydrology, ecosystem diversity and productivity, and global thermal, water and carbon budgets as well as climate change. Estimating...Changes in ground surface thermal regimes play a vital role in surface and subsurface hydrology, ecosystem diversity and productivity, and global thermal, water and carbon budgets as well as climate change. Estimating spring, summer, autumn and winter air temperatures and mean annual air temperature(MAAT) from 1960 through 2008 over the Heihe River Basin reveals a statistically significant trend of 0.31 °C/decade, 0.28 °C/decade, 0.37 °C/decade, 0.50 °C/decade, and 0.37 °C /decade, respectively. The averaged time series of mean annual ground surface temperature(MAGST) and maximum annual ground surface temperature(MaxAGST) for 1972–2006 over the basin indicates a statistically significant trend of 0.58 °C/decade and 1.27 °C/decade, respectively. The minimum annual ground surface temperature(MinAGST) in the same period remains unchanged as a whole. Estimating surface freezing/thawing index as well as the ratio of freezing index to thawing index(RFT) in the period between 1959 and 2006 over the basin indicates a statistically significant trend of-42.5 °C-day/decade, 85.4 °C-day/decade and-0.018/decade, respectively.展开更多
Based on regular surface meteorological observations and NCEP/DOE reanalysis data, this study investigates the evolution of surface sensible heat(SH) over the central and eastern Tibetan Plateau(CE-TP) under the r...Based on regular surface meteorological observations and NCEP/DOE reanalysis data, this study investigates the evolution of surface sensible heat(SH) over the central and eastern Tibetan Plateau(CE-TP) under the recent global warming hiatus. The results reveal that the SH over the CE-TP presents a recovery since the slowdown of the global warming. The restored surface wind speed together with increased difference in ground-air temperature contribute to the recovery in SH.During the global warming hiatus, the persistent weakening wind speed is alleviated due to the variation of the meridional temperature gradient. Meanwhile, the ground surface temperature and the difference in ground-air temperature show a significant increasing trend in that period caused by the increased total cloud amount, especially at night. At nighttime, the increased total cloud cover reduces the surface effective radiation via a strengthening of atmospheric counter radiation and subsequently brings about a clear upward trend in ground surface temperature and the difference in ground-air temperature.Cloud–radiation feedback plays a significant role in the evolution of the surface temperature and even SH during the global warming hiatus. Consequently, besides the surface wind speed, the difference in ground-air temperature becomes another significant factor for the variation in SH since the slowdown of global warming, particularly at night.展开更多
In boreal forest ecosystems, permafrost and forest types are mutually interdependent;permafrost degradation impacts forest ecosystem structure and functions. The Xing’an permafrost in Northeast China is on the southe...In boreal forest ecosystems, permafrost and forest types are mutually interdependent;permafrost degradation impacts forest ecosystem structure and functions. The Xing’an permafrost in Northeast China is on the southern margin of the Eastern Asia latitudinal permafrost body. Under a warming climate, permafrost undergoes rapid and extensive degradation. In this study, the frost-number (Fn) model based on air temperatures and ground surface temperatures was used to predict the distribution of the Xing’an permafrost, and, temporal and spatial changes in air and ground-surface temperatures from 1961 to 2019 are analyzed. The results show that Northeast China has experienced a rapid and substantial climate warming over the past 60 years. The rises in mean annual air and mean annual ground-surface temperatures were higher in permafrost zones than those in the seasonal frost zone. The frost numbers of air and ground-surface temperatures were calculated for determining the southern limit of latitudinal permafrost and for permafrost zonation. The southern limits of discontinuous permafrost, sporadic permafrost, and latitudinal permafrost moved northward significantly. According to the air-temperature frost-number criteria for permafrost zoning, compared with that in the 1960s, the extent of Xing’an permafrost in Northeast China had decreased by 40.6% by the 2010s. With an average rate of increase in mean annual air temperatures at 0.03 ℃ a^(−1), the extent of permafrost in Northeast China will decrease to 26.42 × 10^(4) by 2020, 14.69 × 10^(4) by 2040 and to 11.24 × 10^(4) km^(2) by 2050. According to the ground-surface temperature frost-number criteria, the southern limit of latitudinal permafrost was at the 0.463. From the 1960s to the 2010s, the extent of latitudinal permafrost declined significantly. Due to the nature of the ecosystem-protected Xing’an-Baikal permafrost, management and protection (e.g., more prudent and effective forest fire management and proper logging of forests) of the Xing’an permafrost eco-environment should be strengthened.展开更多
As the summit of the Antarctic Plateau, Dome A has been received international attentions.In this paper, observational data of an automatic weather station (AWS) at Dome A in 2005–2007 were used to analyze the season...As the summit of the Antarctic Plateau, Dome A has been received international attentions.In this paper, observational data of an automatic weather station (AWS) at Dome A in 2005–2007 were used to analyze the seasonal variations of air temperatures near the ground and snow temperatures within a depth of 10 m. Analyses on the air temperatures show a typical feature of the coreless winter, and strong inversion maintains during the long winter. Accordingly the stratification near the ground is dominated by the near-neutral stable states. Seasonal fluctuations of the snow temperature decrease in amplitude and lag in phase with depth increasing, which leads to distinct seasonal temperature profiles within the depth of 10 m. Measurements show the mean annual air temperature near ground is about 5°C higher than the 10 m firn temperature due to the strong inversion near the ground. However, our estimation of the annual mean of air temperature at the ground based on the boundary layer theory is close to the mean 10 m firn temperature. The lowest air temperature (–82.7°C) currently measured at the Dome A is not the lowest one ever recorded in Antarctica, but the extremely low mean 10 m firn temperature (–58.2°C) indicates very low ground temperature. Given the prominent inversion near the ground, it is expected that Dome A might house the lowest ground temperature on the planet.展开更多
基金supported by the Chinese Academy of Sciences Key Research Program (No. KZZD-EW-13)the Natural Science Foundation of China (Nos. 91025013, 91325202)+1 种基金the State Key Laboratory of Frozen Soil Engineering (No. SKLFSE-ZY-06), CASthe Major Research Plan of the National Natural Science Foundation of China (No. 2013CBA01802)
文摘Changes in ground surface thermal regimes play a vital role in surface and subsurface hydrology, ecosystem diversity and productivity, and global thermal, water and carbon budgets as well as climate change. Estimating spring, summer, autumn and winter air temperatures and mean annual air temperature(MAAT) from 1960 through 2008 over the Heihe River Basin reveals a statistically significant trend of 0.31 °C/decade, 0.28 °C/decade, 0.37 °C/decade, 0.50 °C/decade, and 0.37 °C /decade, respectively. The averaged time series of mean annual ground surface temperature(MAGST) and maximum annual ground surface temperature(MaxAGST) for 1972–2006 over the basin indicates a statistically significant trend of 0.58 °C/decade and 1.27 °C/decade, respectively. The minimum annual ground surface temperature(MinAGST) in the same period remains unchanged as a whole. Estimating surface freezing/thawing index as well as the ratio of freezing index to thawing index(RFT) in the period between 1959 and 2006 over the basin indicates a statistically significant trend of-42.5 °C-day/decade, 85.4 °C-day/decade and-0.018/decade, respectively.
基金supported by the National Natural Science Foundation of China(41425019,41661144016,91537214)the Public Science and Technology Research Funds Projects of the Ocean(201505013)
文摘Based on regular surface meteorological observations and NCEP/DOE reanalysis data, this study investigates the evolution of surface sensible heat(SH) over the central and eastern Tibetan Plateau(CE-TP) under the recent global warming hiatus. The results reveal that the SH over the CE-TP presents a recovery since the slowdown of the global warming. The restored surface wind speed together with increased difference in ground-air temperature contribute to the recovery in SH.During the global warming hiatus, the persistent weakening wind speed is alleviated due to the variation of the meridional temperature gradient. Meanwhile, the ground surface temperature and the difference in ground-air temperature show a significant increasing trend in that period caused by the increased total cloud amount, especially at night. At nighttime, the increased total cloud cover reduces the surface effective radiation via a strengthening of atmospheric counter radiation and subsequently brings about a clear upward trend in ground surface temperature and the difference in ground-air temperature.Cloud–radiation feedback plays a significant role in the evolution of the surface temperature and even SH during the global warming hiatus. Consequently, besides the surface wind speed, the difference in ground-air temperature becomes another significant factor for the variation in SH since the slowdown of global warming, particularly at night.
基金The project is fully funded by the Natural Science Foundation of China Program(Grant Nos.42001052 and 41871052)Startup Research Funding of Northeast Forestry University for Chengdong Outstanding Youth Scholarship(YQ2020-10)+1 种基金Chengdong Leadership(LJ2020-01)the State Key Laboratory of Frozen Soils Engineering Open Fund Project(Grant No.SKLFSE202008).
文摘In boreal forest ecosystems, permafrost and forest types are mutually interdependent;permafrost degradation impacts forest ecosystem structure and functions. The Xing’an permafrost in Northeast China is on the southern margin of the Eastern Asia latitudinal permafrost body. Under a warming climate, permafrost undergoes rapid and extensive degradation. In this study, the frost-number (Fn) model based on air temperatures and ground surface temperatures was used to predict the distribution of the Xing’an permafrost, and, temporal and spatial changes in air and ground-surface temperatures from 1961 to 2019 are analyzed. The results show that Northeast China has experienced a rapid and substantial climate warming over the past 60 years. The rises in mean annual air and mean annual ground-surface temperatures were higher in permafrost zones than those in the seasonal frost zone. The frost numbers of air and ground-surface temperatures were calculated for determining the southern limit of latitudinal permafrost and for permafrost zonation. The southern limits of discontinuous permafrost, sporadic permafrost, and latitudinal permafrost moved northward significantly. According to the air-temperature frost-number criteria for permafrost zoning, compared with that in the 1960s, the extent of Xing’an permafrost in Northeast China had decreased by 40.6% by the 2010s. With an average rate of increase in mean annual air temperatures at 0.03 ℃ a^(−1), the extent of permafrost in Northeast China will decrease to 26.42 × 10^(4) by 2020, 14.69 × 10^(4) by 2040 and to 11.24 × 10^(4) km^(2) by 2050. According to the ground-surface temperature frost-number criteria, the southern limit of latitudinal permafrost was at the 0.463. From the 1960s to the 2010s, the extent of latitudinal permafrost declined significantly. Due to the nature of the ecosystem-protected Xing’an-Baikal permafrost, management and protection (e.g., more prudent and effective forest fire management and proper logging of forests) of the Xing’an permafrost eco-environment should be strengthened.
基金supported by the National Science & Technology Pillar Program (Grant No. 2006BAC 06B05)Treasury Special Program of China (Grant No. GYHY200706005)+1 种基金the National Natural Science Foundation of China (Grant No.40921003)the International S&T Cooperation Project of the Ministry of Science and Technology of China (Grant No.2009DFA21430)
文摘As the summit of the Antarctic Plateau, Dome A has been received international attentions.In this paper, observational data of an automatic weather station (AWS) at Dome A in 2005–2007 were used to analyze the seasonal variations of air temperatures near the ground and snow temperatures within a depth of 10 m. Analyses on the air temperatures show a typical feature of the coreless winter, and strong inversion maintains during the long winter. Accordingly the stratification near the ground is dominated by the near-neutral stable states. Seasonal fluctuations of the snow temperature decrease in amplitude and lag in phase with depth increasing, which leads to distinct seasonal temperature profiles within the depth of 10 m. Measurements show the mean annual air temperature near ground is about 5°C higher than the 10 m firn temperature due to the strong inversion near the ground. However, our estimation of the annual mean of air temperature at the ground based on the boundary layer theory is close to the mean 10 m firn temperature. The lowest air temperature (–82.7°C) currently measured at the Dome A is not the lowest one ever recorded in Antarctica, but the extremely low mean 10 m firn temperature (–58.2°C) indicates very low ground temperature. Given the prominent inversion near the ground, it is expected that Dome A might house the lowest ground temperature on the planet.