High temperature air combustion is a prospecting technology in energy saving and pollutants reduction. Numerical simulation on pulverized coal combustion and NOx emissions in high temperature air from circulating flui...High temperature air combustion is a prospecting technology in energy saving and pollutants reduction. Numerical simulation on pulverized coal combustion and NOx emissions in high temperature air from circulating fluidized bed was presented. The down-fired combustor, taken as the calculation domain, has the diameter of 220 mm and the height of 3000 mm. 2 cases with air staging combustion are simulated. Compared the simulation results with experimental data, there is a good agreement. It is found that the combustion model and NOx formation model are applicable to simulate the pulverized coal combustion and NOx emissions in high temperature air from circulating fluidized bed. The results show that there is a uniform temperature profile along the axis of the down-fired combustor. The NOx emissions are lower than those of ordinary pulverized coal combustion, and the NOx emissions are 390 mg/m3 and 352 mg/m3 in Case 1 and Case 2, respectively. At the range of 300-600 mm below the nozzle, the NO concentration decreases, mainly resulting from some homogeneous reactions and heterogeneous reaction. NO concentration has a little increase at the position of 800 mm below the nozzle as the tertiary air supplied to the combustor at the position of 600 mm below the nozzle.展开更多
The reasons of introducing cold air into pulverizer are analyzed for boilers with large capacity and high parameters. The temperature rises of the exhaust gas are calculated when varying the amount of the cold air. Th...The reasons of introducing cold air into pulverizer are analyzed for boilers with large capacity and high parameters. The temperature rises of the exhaust gas are calculated when varying the amount of the cold air. The hot primary air heater, a new technology, is developed to eliminate the cold air from the pulverized coal system. The applications, advantages and disadvantages are introduced in detail for the new device and system. It is concluded that introducing cold air into pulverizer is one of the major factors that causes the exhaust gas temperature of boilers with large capacity to be high. The amount of the cold air could be reduced signif icantly, even to zero in some cases by adopting the hot primary air heater, which drops the exhaust gas temperature of the boiler effectively. The hot primary air heater, which could play part roles of the steam-air heater or the hot air recirculation system, could also be used to adjust the exhaust gas temperature within the range of 20 ℃ by controlling the flow rate of the cooling medium. Moreover, the startup period of the steam-air heater or the hot air recirculation system will be shortened, which is a unique advantage of the hot primary air heater among the measures to drop the exhaust gas temperature.展开更多
基金the support of the National Natural Science Foundation of China (51006103)
文摘High temperature air combustion is a prospecting technology in energy saving and pollutants reduction. Numerical simulation on pulverized coal combustion and NOx emissions in high temperature air from circulating fluidized bed was presented. The down-fired combustor, taken as the calculation domain, has the diameter of 220 mm and the height of 3000 mm. 2 cases with air staging combustion are simulated. Compared the simulation results with experimental data, there is a good agreement. It is found that the combustion model and NOx formation model are applicable to simulate the pulverized coal combustion and NOx emissions in high temperature air from circulating fluidized bed. The results show that there is a uniform temperature profile along the axis of the down-fired combustor. The NOx emissions are lower than those of ordinary pulverized coal combustion, and the NOx emissions are 390 mg/m3 and 352 mg/m3 in Case 1 and Case 2, respectively. At the range of 300-600 mm below the nozzle, the NO concentration decreases, mainly resulting from some homogeneous reactions and heterogeneous reaction. NO concentration has a little increase at the position of 800 mm below the nozzle as the tertiary air supplied to the combustor at the position of 600 mm below the nozzle.
文摘The reasons of introducing cold air into pulverizer are analyzed for boilers with large capacity and high parameters. The temperature rises of the exhaust gas are calculated when varying the amount of the cold air. The hot primary air heater, a new technology, is developed to eliminate the cold air from the pulverized coal system. The applications, advantages and disadvantages are introduced in detail for the new device and system. It is concluded that introducing cold air into pulverizer is one of the major factors that causes the exhaust gas temperature of boilers with large capacity to be high. The amount of the cold air could be reduced signif icantly, even to zero in some cases by adopting the hot primary air heater, which drops the exhaust gas temperature of the boiler effectively. The hot primary air heater, which could play part roles of the steam-air heater or the hot air recirculation system, could also be used to adjust the exhaust gas temperature within the range of 20 ℃ by controlling the flow rate of the cooling medium. Moreover, the startup period of the steam-air heater or the hot air recirculation system will be shortened, which is a unique advantage of the hot primary air heater among the measures to drop the exhaust gas temperature.