The interception information of infrared( IR)-guided air-to-air missiles( AAM) is mainly estimated only using the basic bearing measurements. In order to intercept highly maneuverable targets,it is essential to st...The interception information of infrared( IR)-guided air-to-air missiles( AAM) is mainly estimated only using the basic bearing measurements. In order to intercept highly maneuverable targets,it is essential to study the system observability to improve the target tracking system performance.The uniqueness of this paper is that the observability analysis is derived based on a discrete three-dimensional (3D) system model. During the maneuvering scenario,the system is approximated by a segment-by-segment system. The relationship between missile-target motion and observability is given by direct and dual approaches. Meanwhile sufficient observability conditions are derived. Moreover,a numerical simulation is conducted and an alternate method is provided to reinforce the proposed observability analysis results.展开更多
This paper considers the problem of reference tracking control for the flexible air-breathing hypersonic flight vehicle with actuator delay and uncertainty.By constructing the Lyapunov functional including the lower a...This paper considers the problem of reference tracking control for the flexible air-breathing hypersonic flight vehicle with actuator delay and uncertainty.By constructing the Lyapunov functional including the lower and upper bounds of the time-varying delay,the non-fragile controller is designed such that the resulting closed-loop system is asymptotically stable and satisfies a prescribed performance cost index.The simulation results are given to show the effectiveness of the proposed control method,which is validated by excellent output reference altitude and velocity tracking performance.展开更多
Temperature is one of the important loads for designing slab track. The characteristic of slab track tem- perature varies greatly with different regional climates. In this work, a bi-block slab track model was built u...Temperature is one of the important loads for designing slab track. The characteristic of slab track tem- perature varies greatly with different regional climates. In this work, a bi-block slab track model was built under outdoor conditions in Chengdu area; the statistical characteristic of temperature gradient in track slab and the relationship between temperature gradient and surface air temperature were tested and analyzed. The results show that the track slab temperature gradient will vary periodically according to the surface air temperature, and show a clear nonlinearity along the height direction. The temperature gradient distribution is extremely uneven: the temperature gradient in the top part of the track slab is larger than that in the bottom part; the most frequently occurring temperature gradient of the track slab is around -3.5 ℃/m and more than 75 % locates in the level -10 to 10 ℃/m; concrete with a relatively good heat exchange condition with the surrounding air has a narrower band distribution. In addition, the frequency distribution histogram should exclude the time zone from 00:00 to 06:00 because there is almost no traffic in this period. The amplitude of track slab temperature variation is obviously lower than that of the air temperature variation, and the former is approximately linear with the latter.展开更多
针对防空作战中现有多功能雷达功率资源利用率低的问题,提出一种基于服务质量(Quanlity of Service,QoS)模型的三维机动跟踪功率分配方法以差异化标准提升多目标跟踪性能。将目标三维机动模型建立为自适应当前统计模型,通过将加速度协...针对防空作战中现有多功能雷达功率资源利用率低的问题,提出一种基于服务质量(Quanlity of Service,QoS)模型的三维机动跟踪功率分配方法以差异化标准提升多目标跟踪性能。将目标三维机动模型建立为自适应当前统计模型,通过将加速度协方差与估计误差协方差矩阵相关联以实现自适应调整。在此基础上,对三维跟踪下的贝叶斯克拉美罗下界进行推导,并将其作为跟踪误差衡量指标。通过构建关于目标威胁度与期望跟踪精度的函数关系,建立防空QoS模型下的闭环功率优化分配机制。证明所构建功率优化分配模型是凸优化问题,并进一步转化为半正定规划问题进行求解。仿真结果表明,相对于传统功率分配方法,所提方法能显著提高全局跟踪效能。展开更多
针对低信噪比场景下多飞行目标波达方向(Direction of Arrival,DOA)估计精度不高,导致基于智能天线的民航地空通信抗干扰性能较差的问题,提出了一种基于航向训练模式和动态径向基神经网络(Radial Basis Function Neural Network,RBFNN)...针对低信噪比场景下多飞行目标波达方向(Direction of Arrival,DOA)估计精度不高,导致基于智能天线的民航地空通信抗干扰性能较差的问题,提出了一种基于航向训练模式和动态径向基神经网络(Radial Basis Function Neural Network,RBFNN)的多飞行目标追踪方法。首先融合二次雷达信息,建立民航飞行目标DOA变换关系;然后通过航向训练模式,粗估下一时刻各飞行目标DOA,并作为RBFNN的输入;最后构建隐含层中心动态调整的RBFNN,快速准确追踪各飞行目标DOA。实验表明,该方法可以大幅提高空中同时存在的多飞行目标DOA估计精度;结合波束形成技术,可以大幅提高民航地空通信系统的抗干扰能力,提升民航飞行安全水平;在5 dB信噪比条件下,相对基于常规智能天线的民航地空通信系统,抗干扰能力可以提升16 dB。展开更多
基金Supported by the National Natural Science Foundation of China(61333011)
文摘The interception information of infrared( IR)-guided air-to-air missiles( AAM) is mainly estimated only using the basic bearing measurements. In order to intercept highly maneuverable targets,it is essential to study the system observability to improve the target tracking system performance.The uniqueness of this paper is that the observability analysis is derived based on a discrete three-dimensional (3D) system model. During the maneuvering scenario,the system is approximated by a segment-by-segment system. The relationship between missile-target motion and observability is given by direct and dual approaches. Meanwhile sufficient observability conditions are derived. Moreover,a numerical simulation is conducted and an alternate method is provided to reinforce the proposed observability analysis results.
基金supported by the National Natural Science Foundation of China(6082530390916005)+3 种基金the Aviation Science Fund of China (2009ZA77001)the Foundation for the Author of National Excellent Doctoral Dissertation of China(2007B4)the Key Laboratory Opening Funding(HIT.KLOF.2009099)the Key Laboratory of Integrated Automation for the Process Industry(Northeastern University),Ministry of Education
文摘This paper considers the problem of reference tracking control for the flexible air-breathing hypersonic flight vehicle with actuator delay and uncertainty.By constructing the Lyapunov functional including the lower and upper bounds of the time-varying delay,the non-fragile controller is designed such that the resulting closed-loop system is asymptotically stable and satisfies a prescribed performance cost index.The simulation results are given to show the effectiveness of the proposed control method,which is validated by excellent output reference altitude and velocity tracking performance.
基金supported by the National Key Basic Research Program of China (973 Program) (2013CB036202)the National Natural Science Foundation of China (51008258)Fundamental Research Funds for the Central Universities (SWJTU12CX065)
文摘Temperature is one of the important loads for designing slab track. The characteristic of slab track tem- perature varies greatly with different regional climates. In this work, a bi-block slab track model was built under outdoor conditions in Chengdu area; the statistical characteristic of temperature gradient in track slab and the relationship between temperature gradient and surface air temperature were tested and analyzed. The results show that the track slab temperature gradient will vary periodically according to the surface air temperature, and show a clear nonlinearity along the height direction. The temperature gradient distribution is extremely uneven: the temperature gradient in the top part of the track slab is larger than that in the bottom part; the most frequently occurring temperature gradient of the track slab is around -3.5 ℃/m and more than 75 % locates in the level -10 to 10 ℃/m; concrete with a relatively good heat exchange condition with the surrounding air has a narrower band distribution. In addition, the frequency distribution histogram should exclude the time zone from 00:00 to 06:00 because there is almost no traffic in this period. The amplitude of track slab temperature variation is obviously lower than that of the air temperature variation, and the former is approximately linear with the latter.
文摘针对防空作战中现有多功能雷达功率资源利用率低的问题,提出一种基于服务质量(Quanlity of Service,QoS)模型的三维机动跟踪功率分配方法以差异化标准提升多目标跟踪性能。将目标三维机动模型建立为自适应当前统计模型,通过将加速度协方差与估计误差协方差矩阵相关联以实现自适应调整。在此基础上,对三维跟踪下的贝叶斯克拉美罗下界进行推导,并将其作为跟踪误差衡量指标。通过构建关于目标威胁度与期望跟踪精度的函数关系,建立防空QoS模型下的闭环功率优化分配机制。证明所构建功率优化分配模型是凸优化问题,并进一步转化为半正定规划问题进行求解。仿真结果表明,相对于传统功率分配方法,所提方法能显著提高全局跟踪效能。
文摘针对低信噪比场景下多飞行目标波达方向(Direction of Arrival,DOA)估计精度不高,导致基于智能天线的民航地空通信抗干扰性能较差的问题,提出了一种基于航向训练模式和动态径向基神经网络(Radial Basis Function Neural Network,RBFNN)的多飞行目标追踪方法。首先融合二次雷达信息,建立民航飞行目标DOA变换关系;然后通过航向训练模式,粗估下一时刻各飞行目标DOA,并作为RBFNN的输入;最后构建隐含层中心动态调整的RBFNN,快速准确追踪各飞行目标DOA。实验表明,该方法可以大幅提高空中同时存在的多飞行目标DOA估计精度;结合波束形成技术,可以大幅提高民航地空通信系统的抗干扰能力,提升民航飞行安全水平;在5 dB信噪比条件下,相对基于常规智能天线的民航地空通信系统,抗干扰能力可以提升16 dB。