Air traffic controllers are the important parts of air traffic management system who are responsible for the safety and efficiency of the system.They make traffic management decisions based on information acquired fro...Air traffic controllers are the important parts of air traffic management system who are responsible for the safety and efficiency of the system.They make traffic management decisions based on information acquired from various sources.The understanding of their information seeking behaviors is still limited.We aim to identify controllers′ behavior through the examination of the correlations between controllers′eye movements and air traffic.Sixteen air traffic controllers were invited to participate real-time simulation experiments,during which the data of their eye ball movements and air traffic were recorded.Tweny-three air traffic complexity metrics and six eye movements metrics were calculated to examine their relationships.Two correlational methods,Pearson′s correlation and Spearman′s correlation,were tested between every eye-traffic pair of metrics.The results indicate that controllers′two kinds of information-seeking behaviors can be identified from their eye movements:Targets tracking,and confliction recognition.The study on controllers′ eye movements may contribute to the understanding of information-seeking mechanisms leading to the development of more intelligent automations in the future.展开更多
Air traffic control is an essential obligation in the aviation industry to have safe and efficient air transportation.Year by year,the workload and on-job-stress of the air traffic controllers are rapidly increasing d...Air traffic control is an essential obligation in the aviation industry to have safe and efficient air transportation.Year by year,the workload and on-job-stress of the air traffic controllers are rapidly increasing due to the rapid growth of air traveling.Controllers are usually dealing with multiple aircrafts at a time and must make quick and accurate decisions to ensure the safety of aircrafts.Heavy workload and high responsibilities create air traffic control a stressful job that sometimes could be error-prone and time-consuming,since controlling and decision-making are solely dependent on human intelligence.To provide effective solutions for the mentioned on the job challenges of the controllers,this study proposed an intelligent virtual assistant system(IVAS)to assist the controllers thereby to reduce the controllers’workload.Consisting of four main parts,which are voice recognition,display conversation on screen,task execution,and text to speech,the proposed system is developed with the aid of artificial intelligence(AI)techniques to make speedy decisions and be free of human interventions.IVAS is a computer-based system that can be activated by the voice of the air traffic controller and then appropriately assist to control the flight.IVAS identifies the words spoken by the controller and then a virtual assistant navigates to collect the data requested from the controllers,which allows additional or free time to the controllers to contemplate more on the work or could assist to another aircraft.The Google speech application programming interface(API)converts audio to text to recognize keywords.AI agent is trained using the Hidden marko model(HMM)algorithm such that it could learn the characteristics of the distinct voices of the controllers.At this stage,the proposed IVAS can be used to provide training for novice air traffic controllers effectively.The system is to be developed as a real-time system which could be used at the air traffic controlling base for actual traffic controlling purposes and the system is to be further upgraded to perform the task by recognizing keywords directly from the pilot voice command.展开更多
In order to enhance the accuracy of Air Traffic Control(ATC)cybersecurity attack detection,in this paper,a new clustering detection method is designed for air traffic control network security attacks.The feature set f...In order to enhance the accuracy of Air Traffic Control(ATC)cybersecurity attack detection,in this paper,a new clustering detection method is designed for air traffic control network security attacks.The feature set for ATC cybersecurity attacks is constructed by setting the feature states,adding recursive features,and determining the feature criticality.The expected information gain and entropy of the feature data are computed to determine the information gain of the feature data and reduce the interference of similar feature data.An autoencoder is introduced into the AI(artificial intelligence)algorithm to encode and decode the characteristics of ATC network security attack behavior to reduce the dimensionality of the ATC network security attack behavior data.Based on the above processing,an unsupervised learning algorithm for clustering detection of ATC network security attacks is designed.First,determine the distance between the clustering clusters of ATC network security attack behavior characteristics,calculate the clustering threshold,and construct the initial clustering center.Then,the new average value of all feature objects in each cluster is recalculated as the new cluster center.Second,it traverses all objects in a cluster of ATC network security attack behavior feature data.Finally,the cluster detection of ATC network security attack behavior is completed by the computation of objective functions.The experiment took three groups of experimental attack behavior data sets as the test object,and took the detection rate,false detection rate and recall rate as the test indicators,and selected three similar methods for comparative test.The experimental results show that the detection rate of this method is about 98%,the false positive rate is below 1%,and the recall rate is above 97%.Research shows that this method can improve the detection performance of security attacks in air traffic control network.展开更多
In air traffic control communications (ATCC), misunderstandings between pilots and controllers could result in fatal aviation accidents. Fortunately, advanced automatic speech recognition technology has emerged as a p...In air traffic control communications (ATCC), misunderstandings between pilots and controllers could result in fatal aviation accidents. Fortunately, advanced automatic speech recognition technology has emerged as a promising means of preventing miscommunications and enhancing aviation safety. However, most existing speech recognition methods merely incorporate external language models on the decoder side, leading to insufficient semantic alignment between speech and text modalities during the encoding phase. Furthermore, it is challenging to model acoustic context dependencies over long distances due to the longer speech sequences than text, especially for the extended ATCC data. To address these issues, we propose a speech-text multimodal dual-tower architecture for speech recognition. It employs cross-modal interactions to achieve close semantic alignment during the encoding stage and strengthen its capabilities in modeling auditory long-distance context dependencies. In addition, a two-stage training strategy is elaborately devised to derive semantics-aware acoustic representations effectively. The first stage focuses on pre-training the speech-text multimodal encoding module to enhance inter-modal semantic alignment and aural long-distance context dependencies. The second stage fine-tunes the entire network to bridge the input modality variation gap between the training and inference phases and boost generalization performance. Extensive experiments demonstrate the effectiveness of the proposed speech-text multimodal speech recognition method on the ATCC and AISHELL-1 datasets. It reduces the character error rate to 6.54% and 8.73%, respectively, and exhibits substantial performance gains of 28.76% and 23.82% compared with the best baseline model. The case studies indicate that the obtained semantics-aware acoustic representations aid in accurately recognizing terms with similar pronunciations but distinctive semantics. The research provides a novel modeling paradigm for semantics-aware speech recognition in air traffic control communications, which could contribute to the advancement of intelligent and efficient aviation safety management.展开更多
This study aims to address the deviation in downstream tasks caused by inaccurate recognition results when applying Automatic Speech Recognition(ASR)technology in the Air Traffic Control(ATC)field.This paper presents ...This study aims to address the deviation in downstream tasks caused by inaccurate recognition results when applying Automatic Speech Recognition(ASR)technology in the Air Traffic Control(ATC)field.This paper presents a novel cascaded model architecture,namely Conformer-CTC/Attention-T5(CCAT),to build a highly accurate and robust ATC speech recognition model.To tackle the challenges posed by noise and fast speech rate in ATC,the Conformer model is employed to extract robust and discriminative speech representations from raw waveforms.On the decoding side,the Attention mechanism is integrated to facilitate precise alignment between input features and output characters.The Text-To-Text Transfer Transformer(T5)language model is also introduced to handle particular pronunciations and code-mixing issues,providing more accurate and concise textual output for downstream tasks.To enhance the model’s robustness,transfer learning and data augmentation techniques are utilized in the training strategy.The model’s performance is optimized by performing hyperparameter tunings,such as adjusting the number of attention heads,encoder layers,and the weights of the loss function.The experimental results demonstrate the significant contributions of data augmentation,hyperparameter tuning,and error correction models to the overall model performance.On the Our ATC Corpus dataset,the proposed model achieves a Character Error Rate(CER)of 3.44%,representing a 3.64%improvement compared to the baseline model.Moreover,the effectiveness of the proposed model is validated on two publicly available datasets.On the AISHELL-1 dataset,the CCAT model achieves a CER of 3.42%,showcasing a 1.23%improvement over the baseline model.Similarly,on the LibriSpeech dataset,the CCAT model achieves a Word Error Rate(WER)of 5.27%,demonstrating a performance improvement of 7.67%compared to the baseline model.Additionally,this paper proposes an evaluation criterion for assessing the robustness of ATC speech recognition systems.In robustness evaluation experiments based on this criterion,the proposed model demonstrates a performance improvement of 22%compared to the baseline model.展开更多
Along with the rapid development of air traffic, the contradiction between conventional air traffic management(ATM)and the increasingly complex air traffic situations is more severe,which essentially reduces the opera...Along with the rapid development of air traffic, the contradiction between conventional air traffic management(ATM)and the increasingly complex air traffic situations is more severe,which essentially reduces the operational efficiency of air transport systems. Thus,objectively measuring the air traffic situation complexity becomes a concern in the field of ATM. Most existing studies focus on air traffic complexity assessment,and rarely on the scientific guidance of complex traffic situations. According to the projected time of aircraft arriving at the target sector boundary,we formulated two control strategies to reduce the air traffic complexity. The strategy of entry time optimization was applied to the controllable flights in the adjacent upstream sectors. In contrast,the strategy of flying dynamic speed optimization was applied to the flights in the target sector. During the process of solving complexity control models,we introduced a physical programming method. We transformed the multi-objective optimization problem involving complexity and delay to single-objective optimization problems by designing different preference function. Actual data validated the two complexity control strategies can eliminate the high-complexity situations in reality. The control strategy based on the entry time optimization was more efficient than that based on the speed dynamic optimization. A basic framework for studying air traffic complexity management was preliminarily established. Our findings will help the implementation of a complexity-based ATM.展开更多
In a large-volume,high-density traffic background,air traffic manifests fluid-like microscopical characteristics.The characteristics are formed by the micro tailing actions between individual aircraft.Aircraft headway...In a large-volume,high-density traffic background,air traffic manifests fluid-like microscopical characteristics.The characteristics are formed by the micro tailing actions between individual aircraft.Aircraft headway refers to the time interval between successive flying aircraft in air traffic flow,which is one of the most important characteristics of air traffic flow.The variation in aircraft headway reveals the air traffic control behaviour.In this paper,we study the characteristics of air traffic control behaviours by analyzing radar tracks in a terminal maneuvering area.The headway in arrival traffic flow is measured after the determination of aircraft trailing relationships.The headway evolutionary characteristics for different control decisions and the headway evolutionary characteristics in different phase-states are discussed,and some interesting findings are gotten.This work may be helpful for scholars and managers in understanding the intrinsic nature of air traffic flow and in the development of intelligent assistant decision systems for air traffic management.展开更多
As the main body of air traffic control safety,the air traffic controller is an important part of the whole air traffic control system. According to the relevant data of civil aviation over the years,a mapping model b...As the main body of air traffic control safety,the air traffic controller is an important part of the whole air traffic control system. According to the relevant data of civil aviation over the years,a mapping model between flight support sorties and air traffic controller demand is constructed by using the prediction algorithm of support vector regression(SVR) based on grid search and cross-validation. Then the model predicts the demand for air traffic controllers in seven regions. Additionally,according to the employment data of civil aviation universities,the future training scale of air traffic controller is predicted. The forecast results show that the average relative error of the number of controllers predicted by the algorithm is 1.73%,and the prediction accuracy is higher than traditional regression algorithms. Under the influence of the epidemic,the demand for air traffic controllers will decrease in the short term,but with the control of the epidemic,the demand of air traffic controllers will return to the pre-epidemic level and gradually increase. It is expected that the controller increment will be about 816 by 2028. The forecast results of the demand for air traffic controllers provide a theoretical basis for the introduction and training of medium and long-term air traffic controllers,and also provide method guidance and decision support for the establishment of professional reserve and dynamic control mechanism in the air traffic control system.展开更多
Eye movement is an important indicator of information-seeking behavior and provides insight into cognitive strategies which are vital for decision-making.Various measures based on eye movements have been proposed to c...Eye movement is an important indicator of information-seeking behavior and provides insight into cognitive strategies which are vital for decision-making.Various measures based on eye movements have been proposed to capture humans’ability to process information in a complex environment.The effectiveness of these measures has not yet been fully explored in the field of air traffic management.This paper presents a comparative study on eye-movement measures in air traffic controllers with different levels of working experience.Two commonly investigated oculomotor behaviors,fixation and saccades,together with gaze entropy,are examined.By comparing the statistical properties of the relevant metrics,it is shown that working experience has a notable effect on eye-movement patterns.Both fixation and saccades differ between qualified and novice controllers,with the former type of controller employing more efficient searching strategies.These findings are useful in enhancing the quality of controller training and contributing to an understanding of the information-seeking mechanisms humans use when executing complex tasks.展开更多
A model for evaluating the controller workload was presented based on matter-element analysis, particularly from a mansystem engineering perspective. On the basis of a questionnaire survey, 18 kinds of indexes which i...A model for evaluating the controller workload was presented based on matter-element analysis, particularly from a mansystem engineering perspective. On the basis of a questionnaire survey, 18 kinds of indexes which influence the controller workload were determined. By establishing the classical field and node field of the controller workload, the correlation function of the controller workload grade was obtained; then the correlation degree and estimated grade of controller workload were given. A case study verifies the feasibility of the proposed evaluation method.展开更多
The fundamental case is considered in which flights from many destinations must be scheduled for arrival at a single congested airport having limited capacities.An air traffic control(ATC)model is developed in this ca...The fundamental case is considered in which flights from many destinations must be scheduled for arrival at a single congested airport having limited capacities.An air traffic control(ATC)model is developed in this case.A new and efficient algorithm for the optimal solution of ground holding strategy problem(GHSP)is put forward and verified by a numerical example.展开更多
To solve aircraft arrival sequencing and scheduling problems,and improve the typical predatory search algorithm(PSA),an innovative PSA is developed.The new PSA uses variable constraints of local search and global se...To solve aircraft arrival sequencing and scheduling problems,and improve the typical predatory search algorithm(PSA),an innovative PSA is developed.The new PSA uses variable constraints of local search and global search to avoid falling into local optimal solutions and the degeneration of solutions.To test the performance of new PSA,a case study with ten arriving flights and two runways is performed.Test results show that the new PSA performs much better than typical PSA and genetic algorithm(GA)in the aspects of the rate of gaining optimal solutions and the computational time.展开更多
The airspace congestion is becoming more and more severe.Although there are traffic flow management(TFM)initiatives based on CDM widely applied,how to reschedule these disrupted flights of different airlines integra...The airspace congestion is becoming more and more severe.Although there are traffic flow management(TFM)initiatives based on CDM widely applied,how to reschedule these disrupted flights of different airlines integrating TFM initiatives and allocate the limited airspace resources to these airlines equitably and efficiently is still a problem.The air traffic management(ATM)authority aims to minimizing the systemic costs of congested airspaces.And the airlines are self-interested and profit-oriented.Being incorporated into the collaborative decision making(CDM)process,the airlines can influence the rescheduling decisions to profit themselves.The airlines maybe hide the flight information that is disadvantageous to them,but is necessary to the optimal system decision.To realize the coincidence goal between the ATM authority and airlines for the efficient,and equitable allocation of airspace resources,this paper provides an auction-based market method to solve the congestion airspace problem under the pre-tactic and tactic stage of air traffic flow management.Through a simulation experiment,the rationing results show that the auction method can decrease the total delay costs of flights in the congested airspace compared with both the first schedule first service(FSFS)tactic and the ration by schedule(RBS)tactic.Finally,the analysis results indicate that if reallocate the charges from the auction to the airlines according to the proportion of their disrupted flights,the auction mechanism can allocate the airspace resource in economy equitably and decrease the delay losses of the airlines compared with the results of the FSFS tactic.展开更多
As one of the core modules for air traffic flow management,Air Traffic Flow Prediction(ATFP)in the Multi-Airport System(MAS)is a prerequisite for demand and capacity balance in the complex meteorological environment.D...As one of the core modules for air traffic flow management,Air Traffic Flow Prediction(ATFP)in the Multi-Airport System(MAS)is a prerequisite for demand and capacity balance in the complex meteorological environment.Due to the challenge of implicit interaction mechanism among traffic flow,airspace capacity and weather impact,the Weather-aware ATFP(Wa-ATFP)is still a nontrivial issue.In this paper,a novel Multi-faceted Spatio-Temporal Graph Convolutional Network(MSTGCN)is proposed to address the Wa-ATFP within the complex operations of MAS.Firstly,a spatio-temporal graph is constructed with three different nodes,including airport,route,and fix to describe the topology structure of MAS.Secondly,a weather-aware multi-faceted fusion module is proposed to integrate the feature of air traffic flow and the auxiliary features of capacity and weather,which can effectively address the complex impact of severe weather,e.g.,thunderstorms.Thirdly,to capture the latent connections of nodes,an adaptive graph connection constructor is designed.The experimental results with the real-world operational dataset in Guangdong-Hong Kong-Macao Greater Bay Area,China,validate that the proposed approach outperforms the state-of-the-art machine-learning and deep-learning based baseline approaches in performance.展开更多
A new meta-heuristic approach is proposed in this paper based on a new composite dispatching rule to tackle the aircraft landing problem(ALP).First,the ALP is modeled as a machine scheduling problem with the objective...A new meta-heuristic approach is proposed in this paper based on a new composite dispatching rule to tackle the aircraft landing problem(ALP).First,the ALP is modeled as a machine scheduling problem with the objective of minimizing the total penalty,i.e.,total weighted earliness plus total weighted tardiness.Second,a composite dispatching rule,minimized penalty with due dates and set-ups(MPDS),is presented to determine the landing sequence.Then,an efficient heuristic approach is proposed to solve the problem by integrating the MPDS rule and CPLEX solver.In the first stage,the landing sequence is established based on the proposed MPDS rule.In the second stage,landing time is optimized using CPLEX solver.Next,a new meta-heuristic strategy is introduced into the heuristic approach by conducting the local search from the potential landing sequences,which are generated by the proposed MPDS rule.Finally,the performance of the proposed approach is evaluated using a set of benchmark instances taken from the OR library.The results demonstrate the effectiveness and efficiency of the proposed approaches.展开更多
This paper outlines a multi-dimensional user-oriented performance metrics approach in evaluating the operation of the terminal airspace system to aid in the airport and airspace planning and decision making. Safety, d...This paper outlines a multi-dimensional user-oriented performance metrics approach in evaluating the operation of the terminal airspace system to aid in the airport and airspace planning and decision making. Safety, delay and predictability metrics contribute to the analytical framework. From the findings, the occurrence of air incidence has a high severity level at departure, and arrival phases of flight, higher likelihood at the radar room and much of the incidences were as a result of faulty equipment and inherent absence of modern airspace infrastructure. Also, in Lagos terminal airspace, the number of incidences has no close correlation with the level of traffic complexity. Total schedule arrival delay ranges from 1 - 392 minutes representing an average of 7.8 - 17.9 minutes per aircraft that arrived Lagos airport at that period. Be</span><span style="font-family:Verdana;">sides, the total approach contact time ranges from 1 - 57 minutes, translating to 4.6 - 7.1 minutes per aircraft. However, variability in arrival time of 1 - 5 minutes is common from published airline arrival scheduled time. In the same vein, the variability of 1 - 5 minutes is common from approach contact times of aircraft. These figures indicate sound arrival predictability signature for Lagos airport. Also, departure time variability above 30 mi</span><span style="font-family:Verdana;">nutes is familiar from the ATC clearance time for the various routes under study. However, there is about or more 25% variability of more than 15</span> <span style="font-family:Verdana;">minutes, and this indicates possible inconsistency of predicting departure times from the times Air Traffic Control</span><b> </b><span style="font-family:Verdana;">(ATC) clearance was acquired. Above all, the predictability of departure times in Lagos airport is weak compared to those of the arrival. Taken by it, this may be a sign of airspace congestion or ATC deficiencies at the Lagos airport. This is an indication of the lack of users’ confidence in Nigeria’s air transport industry to deliver just-in-time service.展开更多
Aircraft wake turbulence is an inherent outcome of aircraft flight,presenting a substan-tial challenge to air traffic control,aviation safety and operational efficiency.Building upon data obtained from coherent Dopple...Aircraft wake turbulence is an inherent outcome of aircraft flight,presenting a substan-tial challenge to air traffic control,aviation safety and operational efficiency.Building upon data obtained from coherent Doppler Lidar detection,and combining Dynamic Bayesian Networks(DBN)with Genetic Algorithm-optimized Backpropagation Neural Networks(GA-BPNN),this paper proposes a model for the inversion of wake vortex parameters.During the wake vortex flow field simulation analysis,the wind and turbulent environment were initially superimposed onto the simulated wake velocity field.Subsequently,Lidar-detected echoes of the velocity field are simulated to obtain a data set similar to the actual situation for model training.In the case study validation,real measured data underwent preprocessing and were then input into the established model.This allowed us to construct the wake vortex characteristic parameter inversion model.The final results demonstrated that our model achieved parameter inversion with only minor errors.In a practical example,our model in this paper significantly reduced the mean square error of the inverted velocity field when compared to the traditional algorithm.This study holds significant promise for real-time monitoring of wake vortices at airports,and is proved a crucial step in developing wake vortex interval standards.展开更多
Advanced Air Mobility(AAM)has emerged as a pioneering concept designed to optimize the efficacy and ecological sustainability of air transportation.Its core objective is to provide highly automated air transportation ...Advanced Air Mobility(AAM)has emerged as a pioneering concept designed to optimize the efficacy and ecological sustainability of air transportation.Its core objective is to provide highly automated air transportation services for passengers or cargo,operating at low altitudes within urban,suburban,and rural regions.AAM seeks to enhance the efficiency and environmental viability of the aviation sector by revolutionizing the way air travel is conducted.In a complex aviation environment,traffic management and control are essential technologies for safe and effective AAM operations.One of the most difficult obstacles in the envisioned AAM systems is vehicle coordination at merging points and intersections.The escalating demand for air mobility services,particularly within urban areas,poses significant complexities to the execution of such missions.In this study,we propose a novel multi-agent reinforcement learning(MARL)approach to efficiently manage high-density AAM operations in structured airspace.Our approach provides effective guidance to AAM vehicles,ensuring conflict avoidance,mitigating traffic congestion,reducing travel time,and maintaining safe separation.Specifically,intelligent learning-based algorithms are developed to provide speed guidance for each AAM vehicle,ensuring secure merging into air corridors and safe passage through intersections.To validate the effectiveness of our proposed model,we conduct training and evaluation using BlueSky,an open-source air traffic control simulation environment.Through the simulation of thousands of aircraft and the integration of real-world data,our study demonstrates the promising potential of MARL in enabling safe and efficient AAM operations.The simulation results validate the efficacy of our approach and its ability to achieve the desired outcomes.展开更多
A new arrival and departure flight classification method based on the transitive closure algorithm (TCA) is proposed. Firstly, the fuzzy set theory and the transitive closure algorithm are introduced. Then four diff...A new arrival and departure flight classification method based on the transitive closure algorithm (TCA) is proposed. Firstly, the fuzzy set theory and the transitive closure algorithm are introduced. Then four different factors are selected to establish the flight classification model and a method is given to calculate the delay cost for each class. Finally, the proposed method is implemented in the sequencing problems of flights in a terminal area, and results are compared with that of the traditional classification method(TCM). Results show that the new classification model is effective in reducing the expenses of flight delays, thus optimizing the sequences of arrival and departure flights, and improving the efficiency of air traffic control.展开更多
The air traffic control (ATC) systems are facing more and more serious congestive because of the increasing of air traffic flow in China. One of the most available ways to solve the problem is 'free flight' th...The air traffic control (ATC) systems are facing more and more serious congestive because of the increasing of air traffic flow in China. One of the most available ways to solve the problem is 'free flight' that the pilots may choose the air route and flight speed suitable for them. But this will lead to the difficulties for the controllers. This paper presents how ATC genetic algorithms can be used to detect and to solve air traffic control conflicts in free flight. And it also shows that this algorithm perfectly suits for solving flight conflicts resolution because of its short computing time.展开更多
基金supported by the National Natural Science Foundation of China (No.61304190)the Fundamental Research Funds for the Central Universities (No.NJ20150030)the Natural Science Foundation of Jiangsu Province of China (No.BK20130818)
文摘Air traffic controllers are the important parts of air traffic management system who are responsible for the safety and efficiency of the system.They make traffic management decisions based on information acquired from various sources.The understanding of their information seeking behaviors is still limited.We aim to identify controllers′ behavior through the examination of the correlations between controllers′eye movements and air traffic.Sixteen air traffic controllers were invited to participate real-time simulation experiments,during which the data of their eye ball movements and air traffic were recorded.Tweny-three air traffic complexity metrics and six eye movements metrics were calculated to examine their relationships.Two correlational methods,Pearson′s correlation and Spearman′s correlation,were tested between every eye-traffic pair of metrics.The results indicate that controllers′two kinds of information-seeking behaviors can be identified from their eye movements:Targets tracking,and confliction recognition.The study on controllers′ eye movements may contribute to the understanding of information-seeking mechanisms leading to the development of more intelligent automations in the future.
文摘Air traffic control is an essential obligation in the aviation industry to have safe and efficient air transportation.Year by year,the workload and on-job-stress of the air traffic controllers are rapidly increasing due to the rapid growth of air traveling.Controllers are usually dealing with multiple aircrafts at a time and must make quick and accurate decisions to ensure the safety of aircrafts.Heavy workload and high responsibilities create air traffic control a stressful job that sometimes could be error-prone and time-consuming,since controlling and decision-making are solely dependent on human intelligence.To provide effective solutions for the mentioned on the job challenges of the controllers,this study proposed an intelligent virtual assistant system(IVAS)to assist the controllers thereby to reduce the controllers’workload.Consisting of four main parts,which are voice recognition,display conversation on screen,task execution,and text to speech,the proposed system is developed with the aid of artificial intelligence(AI)techniques to make speedy decisions and be free of human interventions.IVAS is a computer-based system that can be activated by the voice of the air traffic controller and then appropriately assist to control the flight.IVAS identifies the words spoken by the controller and then a virtual assistant navigates to collect the data requested from the controllers,which allows additional or free time to the controllers to contemplate more on the work or could assist to another aircraft.The Google speech application programming interface(API)converts audio to text to recognize keywords.AI agent is trained using the Hidden marko model(HMM)algorithm such that it could learn the characteristics of the distinct voices of the controllers.At this stage,the proposed IVAS can be used to provide training for novice air traffic controllers effectively.The system is to be developed as a real-time system which could be used at the air traffic controlling base for actual traffic controlling purposes and the system is to be further upgraded to perform the task by recognizing keywords directly from the pilot voice command.
基金National Natural Science Foundation of China(U2133208,U20A20161)National Natural Science Foundation of China(No.62273244)Sichuan Science and Technology Program(No.2022YFG0180).
文摘In order to enhance the accuracy of Air Traffic Control(ATC)cybersecurity attack detection,in this paper,a new clustering detection method is designed for air traffic control network security attacks.The feature set for ATC cybersecurity attacks is constructed by setting the feature states,adding recursive features,and determining the feature criticality.The expected information gain and entropy of the feature data are computed to determine the information gain of the feature data and reduce the interference of similar feature data.An autoencoder is introduced into the AI(artificial intelligence)algorithm to encode and decode the characteristics of ATC network security attack behavior to reduce the dimensionality of the ATC network security attack behavior data.Based on the above processing,an unsupervised learning algorithm for clustering detection of ATC network security attacks is designed.First,determine the distance between the clustering clusters of ATC network security attack behavior characteristics,calculate the clustering threshold,and construct the initial clustering center.Then,the new average value of all feature objects in each cluster is recalculated as the new cluster center.Second,it traverses all objects in a cluster of ATC network security attack behavior feature data.Finally,the cluster detection of ATC network security attack behavior is completed by the computation of objective functions.The experiment took three groups of experimental attack behavior data sets as the test object,and took the detection rate,false detection rate and recall rate as the test indicators,and selected three similar methods for comparative test.The experimental results show that the detection rate of this method is about 98%,the false positive rate is below 1%,and the recall rate is above 97%.Research shows that this method can improve the detection performance of security attacks in air traffic control network.
基金This research was funded by Shenzhen Science and Technology Program(Grant No.RCBS20221008093121051)the General Higher Education Project of Guangdong Provincial Education Department(Grant No.2020ZDZX3085)+1 种基金China Postdoctoral Science Foundation(Grant No.2021M703371)the Post-Doctoral Foundation Project of Shenzhen Polytechnic(Grant No.6021330002K).
文摘In air traffic control communications (ATCC), misunderstandings between pilots and controllers could result in fatal aviation accidents. Fortunately, advanced automatic speech recognition technology has emerged as a promising means of preventing miscommunications and enhancing aviation safety. However, most existing speech recognition methods merely incorporate external language models on the decoder side, leading to insufficient semantic alignment between speech and text modalities during the encoding phase. Furthermore, it is challenging to model acoustic context dependencies over long distances due to the longer speech sequences than text, especially for the extended ATCC data. To address these issues, we propose a speech-text multimodal dual-tower architecture for speech recognition. It employs cross-modal interactions to achieve close semantic alignment during the encoding stage and strengthen its capabilities in modeling auditory long-distance context dependencies. In addition, a two-stage training strategy is elaborately devised to derive semantics-aware acoustic representations effectively. The first stage focuses on pre-training the speech-text multimodal encoding module to enhance inter-modal semantic alignment and aural long-distance context dependencies. The second stage fine-tunes the entire network to bridge the input modality variation gap between the training and inference phases and boost generalization performance. Extensive experiments demonstrate the effectiveness of the proposed speech-text multimodal speech recognition method on the ATCC and AISHELL-1 datasets. It reduces the character error rate to 6.54% and 8.73%, respectively, and exhibits substantial performance gains of 28.76% and 23.82% compared with the best baseline model. The case studies indicate that the obtained semantics-aware acoustic representations aid in accurately recognizing terms with similar pronunciations but distinctive semantics. The research provides a novel modeling paradigm for semantics-aware speech recognition in air traffic control communications, which could contribute to the advancement of intelligent and efficient aviation safety management.
基金This study was co-supported by the National Key R&D Program of China(No.2021YFF0603904)National Natural Science Foundation of China(U1733203)Safety Capacity Building Project of Civil Aviation Administration of China(TM2019-16-1/3).
文摘This study aims to address the deviation in downstream tasks caused by inaccurate recognition results when applying Automatic Speech Recognition(ASR)technology in the Air Traffic Control(ATC)field.This paper presents a novel cascaded model architecture,namely Conformer-CTC/Attention-T5(CCAT),to build a highly accurate and robust ATC speech recognition model.To tackle the challenges posed by noise and fast speech rate in ATC,the Conformer model is employed to extract robust and discriminative speech representations from raw waveforms.On the decoding side,the Attention mechanism is integrated to facilitate precise alignment between input features and output characters.The Text-To-Text Transfer Transformer(T5)language model is also introduced to handle particular pronunciations and code-mixing issues,providing more accurate and concise textual output for downstream tasks.To enhance the model’s robustness,transfer learning and data augmentation techniques are utilized in the training strategy.The model’s performance is optimized by performing hyperparameter tunings,such as adjusting the number of attention heads,encoder layers,and the weights of the loss function.The experimental results demonstrate the significant contributions of data augmentation,hyperparameter tuning,and error correction models to the overall model performance.On the Our ATC Corpus dataset,the proposed model achieves a Character Error Rate(CER)of 3.44%,representing a 3.64%improvement compared to the baseline model.Moreover,the effectiveness of the proposed model is validated on two publicly available datasets.On the AISHELL-1 dataset,the CCAT model achieves a CER of 3.42%,showcasing a 1.23%improvement over the baseline model.Similarly,on the LibriSpeech dataset,the CCAT model achieves a Word Error Rate(WER)of 5.27%,demonstrating a performance improvement of 7.67%compared to the baseline model.Additionally,this paper proposes an evaluation criterion for assessing the robustness of ATC speech recognition systems.In robustness evaluation experiments based on this criterion,the proposed model demonstrates a performance improvement of 22%compared to the baseline model.
基金supported by the National Natural Science Foundation of China (Nos.U1833103, 71801215, U1933103)the Fundamental Research Funds for the Central Universities (No.3122019129)。
文摘Along with the rapid development of air traffic, the contradiction between conventional air traffic management(ATM)and the increasingly complex air traffic situations is more severe,which essentially reduces the operational efficiency of air transport systems. Thus,objectively measuring the air traffic situation complexity becomes a concern in the field of ATM. Most existing studies focus on air traffic complexity assessment,and rarely on the scientific guidance of complex traffic situations. According to the projected time of aircraft arriving at the target sector boundary,we formulated two control strategies to reduce the air traffic complexity. The strategy of entry time optimization was applied to the controllable flights in the adjacent upstream sectors. In contrast,the strategy of flying dynamic speed optimization was applied to the flights in the target sector. During the process of solving complexity control models,we introduced a physical programming method. We transformed the multi-objective optimization problem involving complexity and delay to single-objective optimization problems by designing different preference function. Actual data validated the two complexity control strategies can eliminate the high-complexity situations in reality. The control strategy based on the entry time optimization was more efficient than that based on the speed dynamic optimization. A basic framework for studying air traffic complexity management was preliminarily established. Our findings will help the implementation of a complexity-based ATM.
基金supported by the National Nature Science Foundation of China(No.71801215)the Fundamental Research Fund for the Central Universities (No. 3122016C009).
文摘In a large-volume,high-density traffic background,air traffic manifests fluid-like microscopical characteristics.The characteristics are formed by the micro tailing actions between individual aircraft.Aircraft headway refers to the time interval between successive flying aircraft in air traffic flow,which is one of the most important characteristics of air traffic flow.The variation in aircraft headway reveals the air traffic control behaviour.In this paper,we study the characteristics of air traffic control behaviours by analyzing radar tracks in a terminal maneuvering area.The headway in arrival traffic flow is measured after the determination of aircraft trailing relationships.The headway evolutionary characteristics for different control decisions and the headway evolutionary characteristics in different phase-states are discussed,and some interesting findings are gotten.This work may be helpful for scholars and managers in understanding the intrinsic nature of air traffic flow and in the development of intelligent assistant decision systems for air traffic management.
基金supported by the National Natural Science Foundation of China(No.71971114)。
文摘As the main body of air traffic control safety,the air traffic controller is an important part of the whole air traffic control system. According to the relevant data of civil aviation over the years,a mapping model between flight support sorties and air traffic controller demand is constructed by using the prediction algorithm of support vector regression(SVR) based on grid search and cross-validation. Then the model predicts the demand for air traffic controllers in seven regions. Additionally,according to the employment data of civil aviation universities,the future training scale of air traffic controller is predicted. The forecast results show that the average relative error of the number of controllers predicted by the algorithm is 1.73%,and the prediction accuracy is higher than traditional regression algorithms. Under the influence of the epidemic,the demand for air traffic controllers will decrease in the short term,but with the control of the epidemic,the demand of air traffic controllers will return to the pre-epidemic level and gradually increase. It is expected that the controller increment will be about 816 by 2028. The forecast results of the demand for air traffic controllers provide a theoretical basis for the introduction and training of medium and long-term air traffic controllers,and also provide method guidance and decision support for the establishment of professional reserve and dynamic control mechanism in the air traffic control system.
基金This research was supported by the National Natural Science Foundation of China(U1833126,U2033203,61773203,and 61304190).
文摘Eye movement is an important indicator of information-seeking behavior and provides insight into cognitive strategies which are vital for decision-making.Various measures based on eye movements have been proposed to capture humans’ability to process information in a complex environment.The effectiveness of these measures has not yet been fully explored in the field of air traffic management.This paper presents a comparative study on eye-movement measures in air traffic controllers with different levels of working experience.Two commonly investigated oculomotor behaviors,fixation and saccades,together with gaze entropy,are examined.By comparing the statistical properties of the relevant metrics,it is shown that working experience has a notable effect on eye-movement patterns.Both fixation and saccades differ between qualified and novice controllers,with the former type of controller employing more efficient searching strategies.These findings are useful in enhancing the quality of controller training and contributing to an understanding of the information-seeking mechanisms humans use when executing complex tasks.
基金The National Natural Science Foundation of China (60742117)
文摘A model for evaluating the controller workload was presented based on matter-element analysis, particularly from a mansystem engineering perspective. On the basis of a questionnaire survey, 18 kinds of indexes which influence the controller workload were determined. By establishing the classical field and node field of the controller workload, the correlation function of the controller workload grade was obtained; then the correlation degree and estimated grade of controller workload were given. A case study verifies the feasibility of the proposed evaluation method.
文摘The fundamental case is considered in which flights from many destinations must be scheduled for arrival at a single congested airport having limited capacities.An air traffic control(ATC)model is developed in this case.A new and efficient algorithm for the optimal solution of ground holding strategy problem(GHSP)is put forward and verified by a numerical example.
文摘To solve aircraft arrival sequencing and scheduling problems,and improve the typical predatory search algorithm(PSA),an innovative PSA is developed.The new PSA uses variable constraints of local search and global search to avoid falling into local optimal solutions and the degeneration of solutions.To test the performance of new PSA,a case study with ten arriving flights and two runways is performed.Test results show that the new PSA performs much better than typical PSA and genetic algorithm(GA)in the aspects of the rate of gaining optimal solutions and the computational time.
基金Supported by the National High Technology Research and Development Program of China("863"Program)(20060AA12A105)the Chinese Airspace Management Commission Researching Program(GKG200802006)~~
文摘The airspace congestion is becoming more and more severe.Although there are traffic flow management(TFM)initiatives based on CDM widely applied,how to reschedule these disrupted flights of different airlines integrating TFM initiatives and allocate the limited airspace resources to these airlines equitably and efficiently is still a problem.The air traffic management(ATM)authority aims to minimizing the systemic costs of congested airspaces.And the airlines are self-interested and profit-oriented.Being incorporated into the collaborative decision making(CDM)process,the airlines can influence the rescheduling decisions to profit themselves.The airlines maybe hide the flight information that is disadvantageous to them,but is necessary to the optimal system decision.To realize the coincidence goal between the ATM authority and airlines for the efficient,and equitable allocation of airspace resources,this paper provides an auction-based market method to solve the congestion airspace problem under the pre-tactic and tactic stage of air traffic flow management.Through a simulation experiment,the rationing results show that the auction method can decrease the total delay costs of flights in the congested airspace compared with both the first schedule first service(FSFS)tactic and the ration by schedule(RBS)tactic.Finally,the analysis results indicate that if reallocate the charges from the auction to the airlines according to the proportion of their disrupted flights,the auction mechanism can allocate the airspace resource in economy equitably and decrease the delay losses of the airlines compared with the results of the FSFS tactic.
基金supported by the National Key Research and Development Program of China(No.2022YFB2602402)the National Natural Science Foundation of China(Nos.U2033215 and U2133210).
文摘As one of the core modules for air traffic flow management,Air Traffic Flow Prediction(ATFP)in the Multi-Airport System(MAS)is a prerequisite for demand and capacity balance in the complex meteorological environment.Due to the challenge of implicit interaction mechanism among traffic flow,airspace capacity and weather impact,the Weather-aware ATFP(Wa-ATFP)is still a nontrivial issue.In this paper,a novel Multi-faceted Spatio-Temporal Graph Convolutional Network(MSTGCN)is proposed to address the Wa-ATFP within the complex operations of MAS.Firstly,a spatio-temporal graph is constructed with three different nodes,including airport,route,and fix to describe the topology structure of MAS.Secondly,a weather-aware multi-faceted fusion module is proposed to integrate the feature of air traffic flow and the auxiliary features of capacity and weather,which can effectively address the complex impact of severe weather,e.g.,thunderstorms.Thirdly,to capture the latent connections of nodes,an adaptive graph connection constructor is designed.The experimental results with the real-world operational dataset in Guangdong-Hong Kong-Macao Greater Bay Area,China,validate that the proposed approach outperforms the state-of-the-art machine-learning and deep-learning based baseline approaches in performance.
基金This work was supported by the Joint Fund of National Natural Science Foundation of China and Civil Aviation Administration of China(No.U1933117)。
文摘A new meta-heuristic approach is proposed in this paper based on a new composite dispatching rule to tackle the aircraft landing problem(ALP).First,the ALP is modeled as a machine scheduling problem with the objective of minimizing the total penalty,i.e.,total weighted earliness plus total weighted tardiness.Second,a composite dispatching rule,minimized penalty with due dates and set-ups(MPDS),is presented to determine the landing sequence.Then,an efficient heuristic approach is proposed to solve the problem by integrating the MPDS rule and CPLEX solver.In the first stage,the landing sequence is established based on the proposed MPDS rule.In the second stage,landing time is optimized using CPLEX solver.Next,a new meta-heuristic strategy is introduced into the heuristic approach by conducting the local search from the potential landing sequences,which are generated by the proposed MPDS rule.Finally,the performance of the proposed approach is evaluated using a set of benchmark instances taken from the OR library.The results demonstrate the effectiveness and efficiency of the proposed approaches.
文摘This paper outlines a multi-dimensional user-oriented performance metrics approach in evaluating the operation of the terminal airspace system to aid in the airport and airspace planning and decision making. Safety, delay and predictability metrics contribute to the analytical framework. From the findings, the occurrence of air incidence has a high severity level at departure, and arrival phases of flight, higher likelihood at the radar room and much of the incidences were as a result of faulty equipment and inherent absence of modern airspace infrastructure. Also, in Lagos terminal airspace, the number of incidences has no close correlation with the level of traffic complexity. Total schedule arrival delay ranges from 1 - 392 minutes representing an average of 7.8 - 17.9 minutes per aircraft that arrived Lagos airport at that period. Be</span><span style="font-family:Verdana;">sides, the total approach contact time ranges from 1 - 57 minutes, translating to 4.6 - 7.1 minutes per aircraft. However, variability in arrival time of 1 - 5 minutes is common from published airline arrival scheduled time. In the same vein, the variability of 1 - 5 minutes is common from approach contact times of aircraft. These figures indicate sound arrival predictability signature for Lagos airport. Also, departure time variability above 30 mi</span><span style="font-family:Verdana;">nutes is familiar from the ATC clearance time for the various routes under study. However, there is about or more 25% variability of more than 15</span> <span style="font-family:Verdana;">minutes, and this indicates possible inconsistency of predicting departure times from the times Air Traffic Control</span><b> </b><span style="font-family:Verdana;">(ATC) clearance was acquired. Above all, the predictability of departure times in Lagos airport is weak compared to those of the arrival. Taken by it, this may be a sign of airspace congestion or ATC deficiencies at the Lagos airport. This is an indication of the lack of users’ confidence in Nigeria’s air transport industry to deliver just-in-time service.
基金supported by the National Natural Science Foundation of China (No.U2133210).
文摘Aircraft wake turbulence is an inherent outcome of aircraft flight,presenting a substan-tial challenge to air traffic control,aviation safety and operational efficiency.Building upon data obtained from coherent Doppler Lidar detection,and combining Dynamic Bayesian Networks(DBN)with Genetic Algorithm-optimized Backpropagation Neural Networks(GA-BPNN),this paper proposes a model for the inversion of wake vortex parameters.During the wake vortex flow field simulation analysis,the wind and turbulent environment were initially superimposed onto the simulated wake velocity field.Subsequently,Lidar-detected echoes of the velocity field are simulated to obtain a data set similar to the actual situation for model training.In the case study validation,real measured data underwent preprocessing and were then input into the established model.This allowed us to construct the wake vortex characteristic parameter inversion model.The final results demonstrated that our model achieved parameter inversion with only minor errors.In a practical example,our model in this paper significantly reduced the mean square error of the inverted velocity field when compared to the traditional algorithm.This study holds significant promise for real-time monitoring of wake vortices at airports,and is proved a crucial step in developing wake vortex interval standards.
基金This work was funded in part by the National Science Foundation(NSF)CAREER Award CMMI-2237215.
文摘Advanced Air Mobility(AAM)has emerged as a pioneering concept designed to optimize the efficacy and ecological sustainability of air transportation.Its core objective is to provide highly automated air transportation services for passengers or cargo,operating at low altitudes within urban,suburban,and rural regions.AAM seeks to enhance the efficiency and environmental viability of the aviation sector by revolutionizing the way air travel is conducted.In a complex aviation environment,traffic management and control are essential technologies for safe and effective AAM operations.One of the most difficult obstacles in the envisioned AAM systems is vehicle coordination at merging points and intersections.The escalating demand for air mobility services,particularly within urban areas,poses significant complexities to the execution of such missions.In this study,we propose a novel multi-agent reinforcement learning(MARL)approach to efficiently manage high-density AAM operations in structured airspace.Our approach provides effective guidance to AAM vehicles,ensuring conflict avoidance,mitigating traffic congestion,reducing travel time,and maintaining safe separation.Specifically,intelligent learning-based algorithms are developed to provide speed guidance for each AAM vehicle,ensuring secure merging into air corridors and safe passage through intersections.To validate the effectiveness of our proposed model,we conduct training and evaluation using BlueSky,an open-source air traffic control simulation environment.Through the simulation of thousands of aircraft and the integration of real-world data,our study demonstrates the promising potential of MARL in enabling safe and efficient AAM operations.The simulation results validate the efficacy of our approach and its ability to achieve the desired outcomes.
文摘A new arrival and departure flight classification method based on the transitive closure algorithm (TCA) is proposed. Firstly, the fuzzy set theory and the transitive closure algorithm are introduced. Then four different factors are selected to establish the flight classification model and a method is given to calculate the delay cost for each class. Finally, the proposed method is implemented in the sequencing problems of flights in a terminal area, and results are compared with that of the traditional classification method(TCM). Results show that the new classification model is effective in reducing the expenses of flight delays, thus optimizing the sequences of arrival and departure flights, and improving the efficiency of air traffic control.
文摘The air traffic control (ATC) systems are facing more and more serious congestive because of the increasing of air traffic flow in China. One of the most available ways to solve the problem is 'free flight' that the pilots may choose the air route and flight speed suitable for them. But this will lead to the difficulties for the controllers. This paper presents how ATC genetic algorithms can be used to detect and to solve air traffic control conflicts in free flight. And it also shows that this algorithm perfectly suits for solving flight conflicts resolution because of its short computing time.