Aim To study fuel dispersion in fuel air explosive(FAE) and computational ways of fuel dispersion velocity in the near area. Methods\ The dispersion process of fuel in FAE was analyzed by the use of results measured ...Aim To study fuel dispersion in fuel air explosive(FAE) and computational ways of fuel dispersion velocity in the near area. Methods\ The dispersion process of fuel in FAE was analyzed by the use of results measured with KODAK EKTAPRO EM Motion Analyzer and setting up mechanical models. Results\ Computational methods for fuel dispersion velocity in the acceleration stage is given and taken as a base for the study of fuel dispersion in the intermediate and the far area. Conclusion\ When the fuel flow velocity is higher than that of the explosion gas in the center cavity, the fuel divides with the explosion gas and its velocity of flow reaches a maximum. The acceleration stage ends at that time. The fuel dispersion velocity at this time is the initial conditions for numeral analyses of dispersion process in the intermediate and far areas.展开更多
In order to improve the energy level of fuel air explosive(FAE) with delayed secondary igniters, high energetic metal powders were added to liquid fuels mainly composed of ether and isopropyl nitrate.Metal powders’ e...In order to improve the energy level of fuel air explosive(FAE) with delayed secondary igniters, high energetic metal powders were added to liquid fuels mainly composed of ether and isopropyl nitrate.Metal powders’ explosive properties and reaction mechanisms in FAE were studied by high-speed video,pressure test system, and infrared thermal imager. The results show that compared with pure liquid fuels, the shock wave overpressure, maximum surface fireball temperature and high temperature duration of the mixture were significantly increased after adding high energetic metal powder. The overpressure values of the liquid-solid mixture at all measuring points were higher than that of the pure liquid fuels. And the maximum temperature of the fireball was up to 1700C, which was higher than that of the pure liquid fuels. After replacing 30% of aluminum powder with boron or magnesium hydride, the shock wave pressure of the mixture was further increased. The high heat of combustion of boron and the hydrogen released by magnesium hydride could effectively increase the blast effect of the mixture. The improvement of the explosion performance of boron was better than magnesium hydride. It shows that adding high energetic metal powder to liquid fuels can effectively improve the explosion performance of FAE.展开更多
A critical challenge to the commercialization of clean and high-efficiency solid oxide fuel cell(SOFC)technology is the insuf-ficient stack lifespan caused by a variety of degradation mechanisms,which are associated w...A critical challenge to the commercialization of clean and high-efficiency solid oxide fuel cell(SOFC)technology is the insuf-ficient stack lifespan caused by a variety of degradation mechanisms,which are associated with cell components and chemical feedstocks.Cell components related degradation refers to thermal/chemical/electrochemical deterioration of cell materials under operating conditions,whereas the latter regards impurities in feedstocks of oxidant(air)and reductant(fuel).This article provides a thermodynamic perspective on the understanding of the impurities-induced degradation mechanisms in SOFCs.The discussion focuses on using thermodynamic ana-lysis to elucidate poisoning mechanisms in cathodes by impurity species such as Cr,CO_(2),H_(2)O,and SO_(2) and in the anode by species such as S(or H_(2)S),SiO_(2),and P_(2)(or PH_(3)).The author hopes the presented fundamental insights can provide a theoretical foundation for search-ing for better technical solutions to address the critical degradation challenges.展开更多
An improvement in the corrosion resistance of alloys at elevated temperature is a factor for their potential use in gas turbines. In this study, Co Ni Cr Al Y has been coated on the L605 alloy using air plasma spray(A...An improvement in the corrosion resistance of alloys at elevated temperature is a factor for their potential use in gas turbines. In this study, Co Ni Cr Al Y has been coated on the L605 alloy using air plasma spray(APS) and high-velocity oxygen fuel(HVOF) coating techniques to enhance its corrosion resistance. Hot corrosion studies were conducted on uncoated and coated samples in a molten salt environment at 850°C under cyclic conditions. Thermogravimetric analysis was used to determine the corrosion kinetics. The samples were subjected to scanning electron microscopy, energy-dispersive spectroscopy, and X-ray diffraction for further investigation. In coated samples, the formation of Al2O3 and Cr2O3 in the coating acts as a diffusion barrier that could resists the inward movement of the corrosive species present in the molten salt. Coated samples showed very less spallation, lower weight gain, less porosity, and internal oxidation as compared to uncoated sample.HVOF-coated sample showed greater corrosion resistance and inferred that this is the best technique under these conditions.展开更多
A solid state H2S/air electrochemical cell having the configuration of H2S, (MoS2+NiS+Ag)/YSZ/Pt, air has been examined with different H2S flow rates and concentrations at atmospheric pressure and 750-850 ℃. Performa...A solid state H2S/air electrochemical cell having the configuration of H2S, (MoS2+NiS+Ag)/YSZ/Pt, air has been examined with different H2S flow rates and concentrations at atmospheric pressure and 750-850 ℃. Performance of the fuel cell was dependent on anode compartment H2S flow rate and concentration. The cell open-circuit voltage increased with increasing H2S flow rate. It was found that increasing both H2S flow rate and H2S concentration improved current-voltage and power density performance. This is resulted from improved gas diffusion in anode and increased concentration of anodic electroactive species. Operation at elevated H2S concentration improved the cell performance at a given gas flow rate. However, as low as 5% H2S in gas mixture can also be utilized as fuel feed to cells. Highest current and power densities, 17500mA·cm-2 and 200mW·cm-2, are obtained with pure H2S flow rate of 50ml·min-1 and air flow rate of 100ml·min-1 at 850℃.展开更多
This numerical study investigates the effects of using a diluted fuel (50% natural gas and 50% N2) in an industrial furnace under several cases of conventional combustion (air with 21% O2 at 300 and 1273 K) and th...This numerical study investigates the effects of using a diluted fuel (50% natural gas and 50% N2) in an industrial furnace under several cases of conventional combustion (air with 21% O2 at 300 and 1273 K) and the highly preheated and diluted air (1273 K with 10% O2 and 90% N2) combustion (HPDAC) conditions using an in-house computer program. It was found that by applying a combined diluted fuel and oxidant instead of their uncombined and/or undiluted states, the best condition is obtained for the establishment of HPDAC's main unique features. These features are low mean and maximum gas temperature and high radiation/total heat transfer to gas and tubes; as well as more uniformity of theirs distributions which results in decrease in NOx pollutant formation and increase in furnace efficiency or energy saving. Moreover, a variety of chemical flame shape, the process fluid and tubes walls temperatures profiles, the required regenerator efficiency and finally the concentration and velocity patterns have been also qualitatively/quantitatively studied.展开更多
To prevent the oxygen starvation and improve the system output performance, an adaptive inverse control (AIC) strategy is developed to regulate the air supply flow of a proton exchange membrane fuel cell (PEMFC) s...To prevent the oxygen starvation and improve the system output performance, an adaptive inverse control (AIC) strategy is developed to regulate the air supply flow of a proton exchange membrane fuel cell (PEMFC) system in this paper. The PEMFC stack and the air supply system including a compressor and a supply manifold are modeled for the purpose of performance analysis and controller design. A recurrent fuzzy neural network (RFNN) is utilized to identify the inverse model of the controlled system and generates a suitable control input during the abrupt step change of external disturbances. Compared with the PI controller, numerical simulations are performed to validate the effectiveness and advantages of the proposed AIC strategy.展开更多
An infrared colorimetric radiation thermometrical system was established based on the theory of optical radiation. The dynamic temperature history of fuel air explosive (FAE) was measured to obtain the temperature res...An infrared colorimetric radiation thermometrical system was established based on the theory of optical radiation. The dynamic temperature history of fuel air explosive (FAE) was measured to obtain the temperature responses of primary initiation FAE and secondary initiation FAE in real time. And the characteristics of their temperature history curves were compared and analyzed. The results show that the primary initiation FAE has higher explosion temperature and longer duration compared to the secondary initiation FAE.展开更多
Most of the traditional taxi path planning studies assume that the aircraft is in uniform speed,and the optimization goal is the shortest taxi time.Although it is easy to solve,it does not consider the changes in the ...Most of the traditional taxi path planning studies assume that the aircraft is in uniform speed,and the optimization goal is the shortest taxi time.Although it is easy to solve,it does not consider the changes in the speed profile of the aircraft when turning,and the shortest taxi time does not necessarily bring the best taxi fuel consumption.In this paper,the number of turns is considered,and the improved A*algorithm is used to obtain the P static paths with the shortest sum of the straight-line distance and the turning distance of the aircraft as the feasible taxi paths.By balancing taxi time and fuel consumption,a set of Pareto optimal speed profiles are generated for each preselected path to predict the 4-D trajectory of the aircraft.Based on the 4-D trajectory prediction results,the conflict by the occupied time window in the taxiing area is detected.For the conflict aircraft,based on the priority comparison,the waiting or changing path is selected to solve the taxiing conflict.Finally,the conflict free aircraft taxiing path is generated and the area occupation time window on the path is updated.The experimental results show that the total taxi distance and turn time of the aircraft are reduced,and the fuel consumption is reduced.The proposed method has high practical application value and is expected to be applied in real-time air traffic control decision-making in the future.展开更多
For a 120 kW hydrogen fuel cell system,a centrifugal air compressor with fixed power of 22 kW fuel cell is designed.Firstly,the theoretical calculation is carried out for the aerodynamic characteristics of a ultra-hig...For a 120 kW hydrogen fuel cell system,a centrifugal air compressor with fixed power of 22 kW fuel cell is designed.Firstly,the theoretical calculation is carried out for the aerodynamic characteristics of a ultra-high-speed permanent magnet synchronous motor,an air compressor,and an aerodynamic foil bearing.Then,a prototype is trial-produced and a related test bench is built for test verification.Finally,both the simulation and test results indicate that the designed centrifugal air compressor meets the overall requirements of the hydrogen fuel cell system,and the relevant conclusions provide both theoretical and experimental references for the subsequent series development and design of the centrifugal air compressor.展开更多
The fuzzy neural networks has been used as means of precisely controlling the air-fuel ratio of a lean-burn compressed natural gas (CNG) engine. A control algorithm, without based on engine model, has been (utilized) ...The fuzzy neural networks has been used as means of precisely controlling the air-fuel ratio of a lean-burn compressed natural gas (CNG) engine. A control algorithm, without based on engine model, has been (utilized) to construct a feedforward/feedback control scheme to regulate the air-fuel ratio. Using fuzzy neural networks, a fuzzy neural hybrid controller is obtained based on PI controller. The new controller, which can adjust parameters online, has been tested in transient air-fuel ratio control of a CNG engine.展开更多
Air flow control is one of the most important control methods for maintaining the stability and reliability of a fuel cell system, which can avoid oxygen starvation or oxygen saturation. The oxygen excess ratio (OER...Air flow control is one of the most important control methods for maintaining the stability and reliability of a fuel cell system, which can avoid oxygen starvation or oxygen saturation. The oxygen excess ratio (OER) is often used to indicate the air flow condition. Based on a fuel cell system model for vehicles, OER performance was analyzed for different stack currents and temperatures in this paper, and the results show that the optimal OER was affected weakly by the stack temperature. In order to ensure the system working in optimal OER, a control scheme that includes an optimal OER regulator and a fuzzy control was proposed. According to the stack current, a reference value of air flow rate was obtained with the optimal OER regulator and then the air compressor motor voltage was controlled with the fuzzy controller to adjust the air flow rate provided by the air compressor. Simulation results show that the control method has good dynamic and static characteristics.展开更多
Since the Industrial Revolution, greenhouse gas (GHG) emissions have greatly increased with the increased use of fossil fuels, leading to air pollution and global warming. We present the researches on air pollution an...Since the Industrial Revolution, greenhouse gas (GHG) emissions have greatly increased with the increased use of fossil fuels, leading to air pollution and global warming. We present the researches on air pollution and the use of fossil fuels in north China, the economic zone of Changsha-Zhuzhou-Xiangtan and the economic zone of the Pearl River Delta region. Researches indicate that the use of fossil fuels has been the main source of air pollution in the three regions. We present researches on global mean surface temperature (GMST) with the rise of carbon dioxide concentration (CDC) and global fossil fuel consumption (GFFC);researches indicate that the rise in CDC can account for 91% of the rise in GMST, and GFFC can account for 90% of the rise in GMST. We analyse the factors that bring about air pollution and temperature rise, they are the use of fossil fuels and deforestation. It is critically important to replace fossil fuels with clean energy, but renewable energy has also disadvantages. The world faces difficulties in solving air pollution and global warming, so governments of the world should cooperate to solve the technologies of clean energy, and preserve the forests and the natural environment.展开更多
This paper presents an application of adaptive neural network model-based predictive control (MPC) to the air-fuel ratio of an engine simulation. A multi-layer perceptron (MLP) neural network is trained using two on-l...This paper presents an application of adaptive neural network model-based predictive control (MPC) to the air-fuel ratio of an engine simulation. A multi-layer perceptron (MLP) neural network is trained using two on-line training algorithms: a back propagation algorithm and a recursive least squares (RLS) algorithm. It is used to model parameter uncertainties in the nonlinear dynamics of internal combustion (IC) engines. Based on the adaptive model, an MPC strategy for controlling air-fuel ratio is realized, and its control performance compared with that of a traditional PI controller. A reduced Hessian method, a newly developed sequential quadratic programming (SQP) method for solving nonlinear programming (NLP) problems, is implemented to speed up nonlinear optimization in the MPC. Keywords Air-fuel ratio control - IC engine - adaptive neural networks - nonlinear programming - model predictive control Shi-Wei Wang PhD student, Liverpool John Moores University; MSc in Control Systems, University of Sheffield, 2003; BEng in Automatic Technology, Jilin University, 2000; Current research interests automotive engine control, model predictive control, sliding mode control, neural networks.Ding-Li Yu obtained B.Eng from Harbin Civil Engineering College, Harbin, China in 1981, M.Sc from Jilin University of Technology, Changchun, China in 1986 and PhD from Coventry University, U.K. in 1995, all in control engineering. He is currently a Reader in Process Control at Liverpool John Moores University, U.K. His current research interests are in process control, engine control, fault detection and adaptive neural nets. He is a member of SAFEPROCESS TC in IFAC and an associate editor of the IJMIC and the IJISS.展开更多
In order to study the factors that influence the air fuel ratio(A/F), the amplitude and frequency of A/F fluctuation, to reform the control strategy, and to improve the efficiency of three way catalyst(TWC), a model...In order to study the factors that influence the air fuel ratio(A/F), the amplitude and frequency of A/F fluctuation, to reform the control strategy, and to improve the efficiency of three way catalyst(TWC), a model of closed loop control system including the engine, air fuel mixing and transportation, oxygen sensor and controller, etc., is developed. Various factors that influence the A/F control are studied by simulation. The simulation results show that the reference voltage of oxygen sensor will influence the mean value of A/F ratio, the controller parameters will influence the amplitude of A/F fluctuation, and the operating conditions of the engine determine the frequency of A/F fluctuations, the amplitude of A/F fluctuation can be reduced to within demanded values by logical selection of the signal acquisition method and controller parameters. Higher A/F fluctuation frequency under high speed and load can be reduced through software delay in the controller. The A/F closed loop control system based on the simulation results, accompanied with a rare earth element TWC, gives a better efficiency of conversion against harmful emissions.展开更多
The fuel-air cloud resulting from an accidental discharge event is normally irregular in shape and varying in concentration. Performance of dispersion simulations using the computational fluid dynamics (CFD)-based t...The fuel-air cloud resulting from an accidental discharge event is normally irregular in shape and varying in concentration. Performance of dispersion simulations using the computational fluid dynamics (CFD)-based tool FLACS can get an uneven and irregular cloud. For the performance of gas explosion study with FLACS, the equivalent stoichiometric fuel-air cloud concept is widely applied to get a representative distribution of explosion loads. The Q9 cloud model that is employed in FLACS is an equivalent fuel-air cloud representation, in which the laminar burning velocity with first order SL and volume expansion ratio are taken into consideration. However, during an explosion in congested areas, the main part of the combustion involves turbulent flame propagation. Hence, to give a more reasonable equivalent fuel-air size, the turbulent burning velocity must be taken into consideration. The paper presents a new equivalent cloud method using the turbulent burning velocity, which is described as a function of SL, deduced from the TNO multi- energy method.展开更多
Biomass Fuel (BMF) refers to burned plant or animal material;wood, charcoal, dung and crop residues which account for more than half of domestic energy in most developing countries and for as much as 95% in low income...Biomass Fuel (BMF) refers to burned plant or animal material;wood, charcoal, dung and crop residues which account for more than half of domestic energy in most developing countries and for as much as 95% in low income countries. It is estimated that about 3 billion people in the world rely on biomass fuel for cooking, heating and lighting. The biomass fuel chain includes gathering, transportation, processing and combustion. These processes are predominantly managed by women where they work as gatherers, processors, carriers or transporters and also as end-users or cooks. Thus, they suffer health hazards at all stages of the biomass fuel chain. The main objective was to assess health effects related to the use of Biomass fuel and indoor air pollution in Kapkokwon Sub-location, Kericho County, Kenya from March to May, 2013. The study area was Kapkokwon sub location, Bomet County, Kenya. The study population was 202 households. Primary females of the household were the target group as they managed the biomass chain. A quantitative descriptive cross-sectional study design was adopted to assess the health effects associated to the use of biomass fuel and indoor air pollution. The research revealed that women suffer different type of physical ailments due to the biomass fuel chain. Physical exhaustion (86%), neck aches (78%), headaches (34%), knee aches (30%) and back aches (16%) were reported as the principal health effects associated with the third stage of the biomass fuel chain. Irritation of the mucus membrane of the eyes, nose and throat (100%), coughing (100%), burns (42%), shortness of breath (38%) and exacerbation of asthma (2%) were identified as principal health effects associated with the fourth stage of the biomass fuel chain (cooking). As a result of the detrimental impact of indoor air pollution (IAP) on health and mortality, many governments, non-governmental organization and international organizations should develop strategies aimed at reducing indoor air pollution. The strategies to include subsidization of cleaner fuel technologies, development, promotion and subsidization of improved cooking stoves, use of solar thermal cookers and solar hot water heaters, processing biomass fuel to make them cleaner, modifying user behavior and improved household design.展开更多
The relative characteristics of motion of the fuel and shell upon launching is analyzed. By means of mechanical analysis and calculation, it is proposed that relative motion exists not only in the ranges between the f...The relative characteristics of motion of the fuel and shell upon launching is analyzed. By means of mechanical analysis and calculation, it is proposed that relative motion exists not only in the ranges between the fuel and shell of the warhead, but also in the fuel in different positions. The result of study indicates that the position of the fuel in the warhead has a marked influence on the relative motion, while the frictional coefficient between the fuel and shell has less influence upon it.展开更多
文摘Aim To study fuel dispersion in fuel air explosive(FAE) and computational ways of fuel dispersion velocity in the near area. Methods\ The dispersion process of fuel in FAE was analyzed by the use of results measured with KODAK EKTAPRO EM Motion Analyzer and setting up mechanical models. Results\ Computational methods for fuel dispersion velocity in the acceleration stage is given and taken as a base for the study of fuel dispersion in the intermediate and the far area. Conclusion\ When the fuel flow velocity is higher than that of the explosion gas in the center cavity, the fuel divides with the explosion gas and its velocity of flow reaches a maximum. The acceleration stage ends at that time. The fuel dispersion velocity at this time is the initial conditions for numeral analyses of dispersion process in the intermediate and far areas.
基金supported by the Young Scientists Fund of the National Natural Science Foundation of China (No. 11802136)。
文摘In order to improve the energy level of fuel air explosive(FAE) with delayed secondary igniters, high energetic metal powders were added to liquid fuels mainly composed of ether and isopropyl nitrate.Metal powders’ explosive properties and reaction mechanisms in FAE were studied by high-speed video,pressure test system, and infrared thermal imager. The results show that compared with pure liquid fuels, the shock wave overpressure, maximum surface fireball temperature and high temperature duration of the mixture were significantly increased after adding high energetic metal powder. The overpressure values of the liquid-solid mixture at all measuring points were higher than that of the pure liquid fuels. And the maximum temperature of the fireball was up to 1700C, which was higher than that of the pure liquid fuels. After replacing 30% of aluminum powder with boron or magnesium hydride, the shock wave pressure of the mixture was further increased. The high heat of combustion of boron and the hydrogen released by magnesium hydride could effectively increase the blast effect of the mixture. The improvement of the explosion performance of boron was better than magnesium hydride. It shows that adding high energetic metal powder to liquid fuels can effectively improve the explosion performance of FAE.
基金supported by the U.S.Department of Energy’s Office of Energy Efficiency and Renewable Energy(EERE)under the Fuel Cell Technologies Office(FCTO)(No.DE-EE-0008842)the Office of Fossil Energy and Carbon Management under National Energy Technology Lab(No.DE-FE-0032111).
文摘A critical challenge to the commercialization of clean and high-efficiency solid oxide fuel cell(SOFC)technology is the insuf-ficient stack lifespan caused by a variety of degradation mechanisms,which are associated with cell components and chemical feedstocks.Cell components related degradation refers to thermal/chemical/electrochemical deterioration of cell materials under operating conditions,whereas the latter regards impurities in feedstocks of oxidant(air)and reductant(fuel).This article provides a thermodynamic perspective on the understanding of the impurities-induced degradation mechanisms in SOFCs.The discussion focuses on using thermodynamic ana-lysis to elucidate poisoning mechanisms in cathodes by impurity species such as Cr,CO_(2),H_(2)O,and SO_(2) and in the anode by species such as S(or H_(2)S),SiO_(2),and P_(2)(or PH_(3)).The author hopes the presented fundamental insights can provide a theoretical foundation for search-ing for better technical solutions to address the critical degradation challenges.
文摘An improvement in the corrosion resistance of alloys at elevated temperature is a factor for their potential use in gas turbines. In this study, Co Ni Cr Al Y has been coated on the L605 alloy using air plasma spray(APS) and high-velocity oxygen fuel(HVOF) coating techniques to enhance its corrosion resistance. Hot corrosion studies were conducted on uncoated and coated samples in a molten salt environment at 850°C under cyclic conditions. Thermogravimetric analysis was used to determine the corrosion kinetics. The samples were subjected to scanning electron microscopy, energy-dispersive spectroscopy, and X-ray diffraction for further investigation. In coated samples, the formation of Al2O3 and Cr2O3 in the coating acts as a diffusion barrier that could resists the inward movement of the corrosive species present in the molten salt. Coated samples showed very less spallation, lower weight gain, less porosity, and internal oxidation as compared to uncoated sample.HVOF-coated sample showed greater corrosion resistance and inferred that this is the best technique under these conditions.
基金Supported by the Natural Science Foundation of Guangdong Province (No. 031424).
文摘A solid state H2S/air electrochemical cell having the configuration of H2S, (MoS2+NiS+Ag)/YSZ/Pt, air has been examined with different H2S flow rates and concentrations at atmospheric pressure and 750-850 ℃. Performance of the fuel cell was dependent on anode compartment H2S flow rate and concentration. The cell open-circuit voltage increased with increasing H2S flow rate. It was found that increasing both H2S flow rate and H2S concentration improved current-voltage and power density performance. This is resulted from improved gas diffusion in anode and increased concentration of anodic electroactive species. Operation at elevated H2S concentration improved the cell performance at a given gas flow rate. However, as low as 5% H2S in gas mixture can also be utilized as fuel feed to cells. Highest current and power densities, 17500mA·cm-2 and 200mW·cm-2, are obtained with pure H2S flow rate of 50ml·min-1 and air flow rate of 100ml·min-1 at 850℃.
基金Supported by the National Iranian Oil Company (NIOC)
文摘This numerical study investigates the effects of using a diluted fuel (50% natural gas and 50% N2) in an industrial furnace under several cases of conventional combustion (air with 21% O2 at 300 and 1273 K) and the highly preheated and diluted air (1273 K with 10% O2 and 90% N2) combustion (HPDAC) conditions using an in-house computer program. It was found that by applying a combined diluted fuel and oxidant instead of their uncombined and/or undiluted states, the best condition is obtained for the establishment of HPDAC's main unique features. These features are low mean and maximum gas temperature and high radiation/total heat transfer to gas and tubes; as well as more uniformity of theirs distributions which results in decrease in NOx pollutant formation and increase in furnace efficiency or energy saving. Moreover, a variety of chemical flame shape, the process fluid and tubes walls temperatures profiles, the required regenerator efficiency and finally the concentration and velocity patterns have been also qualitatively/quantitatively studied.
基金Project supported by the National Natural Science Foundation of China (Grant No.20576071)the Natural Science Foundation of Shanghai Municipality (Grant No.08ZR1409800)
文摘To prevent the oxygen starvation and improve the system output performance, an adaptive inverse control (AIC) strategy is developed to regulate the air supply flow of a proton exchange membrane fuel cell (PEMFC) system in this paper. The PEMFC stack and the air supply system including a compressor and a supply manifold are modeled for the purpose of performance analysis and controller design. A recurrent fuzzy neural network (RFNN) is utilized to identify the inverse model of the controlled system and generates a suitable control input during the abrupt step change of external disturbances. Compared with the PI controller, numerical simulations are performed to validate the effectiveness and advantages of the proposed AIC strategy.
基金Sponsored by the National Natural Science Foundation of China (10772032)
文摘An infrared colorimetric radiation thermometrical system was established based on the theory of optical radiation. The dynamic temperature history of fuel air explosive (FAE) was measured to obtain the temperature responses of primary initiation FAE and secondary initiation FAE in real time. And the characteristics of their temperature history curves were compared and analyzed. The results show that the primary initiation FAE has higher explosion temperature and longer duration compared to the secondary initiation FAE.
基金supported by the National Key R&D Project(No.2020YFB1600101)National Natural Science Foundations of China(Nos.U1833103,71801215)Civil Aviation Flight Wide Area Surveillance and Safety Control Technology Key Laboratory Open Fund(No.202008)。
文摘Most of the traditional taxi path planning studies assume that the aircraft is in uniform speed,and the optimization goal is the shortest taxi time.Although it is easy to solve,it does not consider the changes in the speed profile of the aircraft when turning,and the shortest taxi time does not necessarily bring the best taxi fuel consumption.In this paper,the number of turns is considered,and the improved A*algorithm is used to obtain the P static paths with the shortest sum of the straight-line distance and the turning distance of the aircraft as the feasible taxi paths.By balancing taxi time and fuel consumption,a set of Pareto optimal speed profiles are generated for each preselected path to predict the 4-D trajectory of the aircraft.Based on the 4-D trajectory prediction results,the conflict by the occupied time window in the taxiing area is detected.For the conflict aircraft,based on the priority comparison,the waiting or changing path is selected to solve the taxiing conflict.Finally,the conflict free aircraft taxiing path is generated and the area occupation time window on the path is updated.The experimental results show that the total taxi distance and turn time of the aircraft are reduced,and the fuel consumption is reduced.The proposed method has high practical application value and is expected to be applied in real-time air traffic control decision-making in the future.
基金supported in part by the Key R&D projects in Hebei Province under Grant 20312202D。
文摘For a 120 kW hydrogen fuel cell system,a centrifugal air compressor with fixed power of 22 kW fuel cell is designed.Firstly,the theoretical calculation is carried out for the aerodynamic characteristics of a ultra-high-speed permanent magnet synchronous motor,an air compressor,and an aerodynamic foil bearing.Then,a prototype is trial-produced and a related test bench is built for test verification.Finally,both the simulation and test results indicate that the designed centrifugal air compressor meets the overall requirements of the hydrogen fuel cell system,and the relevant conclusions provide both theoretical and experimental references for the subsequent series development and design of the centrifugal air compressor.
文摘The fuzzy neural networks has been used as means of precisely controlling the air-fuel ratio of a lean-burn compressed natural gas (CNG) engine. A control algorithm, without based on engine model, has been (utilized) to construct a feedforward/feedback control scheme to regulate the air-fuel ratio. Using fuzzy neural networks, a fuzzy neural hybrid controller is obtained based on PI controller. The new controller, which can adjust parameters online, has been tested in transient air-fuel ratio control of a CNG engine.
基金supported by the National Natural Science Foundation of China (No. 51177138)the Research Fund for the Doctoral Program of High Education of China (No.20100184110015)Sichuan Province International Technology Cooperation and Exchange Program (No. 2012HH0007)
文摘Air flow control is one of the most important control methods for maintaining the stability and reliability of a fuel cell system, which can avoid oxygen starvation or oxygen saturation. The oxygen excess ratio (OER) is often used to indicate the air flow condition. Based on a fuel cell system model for vehicles, OER performance was analyzed for different stack currents and temperatures in this paper, and the results show that the optimal OER was affected weakly by the stack temperature. In order to ensure the system working in optimal OER, a control scheme that includes an optimal OER regulator and a fuzzy control was proposed. According to the stack current, a reference value of air flow rate was obtained with the optimal OER regulator and then the air compressor motor voltage was controlled with the fuzzy controller to adjust the air flow rate provided by the air compressor. Simulation results show that the control method has good dynamic and static characteristics.
文摘Since the Industrial Revolution, greenhouse gas (GHG) emissions have greatly increased with the increased use of fossil fuels, leading to air pollution and global warming. We present the researches on air pollution and the use of fossil fuels in north China, the economic zone of Changsha-Zhuzhou-Xiangtan and the economic zone of the Pearl River Delta region. Researches indicate that the use of fossil fuels has been the main source of air pollution in the three regions. We present researches on global mean surface temperature (GMST) with the rise of carbon dioxide concentration (CDC) and global fossil fuel consumption (GFFC);researches indicate that the rise in CDC can account for 91% of the rise in GMST, and GFFC can account for 90% of the rise in GMST. We analyse the factors that bring about air pollution and temperature rise, they are the use of fossil fuels and deforestation. It is critically important to replace fossil fuels with clean energy, but renewable energy has also disadvantages. The world faces difficulties in solving air pollution and global warming, so governments of the world should cooperate to solve the technologies of clean energy, and preserve the forests and the natural environment.
文摘This paper presents an application of adaptive neural network model-based predictive control (MPC) to the air-fuel ratio of an engine simulation. A multi-layer perceptron (MLP) neural network is trained using two on-line training algorithms: a back propagation algorithm and a recursive least squares (RLS) algorithm. It is used to model parameter uncertainties in the nonlinear dynamics of internal combustion (IC) engines. Based on the adaptive model, an MPC strategy for controlling air-fuel ratio is realized, and its control performance compared with that of a traditional PI controller. A reduced Hessian method, a newly developed sequential quadratic programming (SQP) method for solving nonlinear programming (NLP) problems, is implemented to speed up nonlinear optimization in the MPC. Keywords Air-fuel ratio control - IC engine - adaptive neural networks - nonlinear programming - model predictive control Shi-Wei Wang PhD student, Liverpool John Moores University; MSc in Control Systems, University of Sheffield, 2003; BEng in Automatic Technology, Jilin University, 2000; Current research interests automotive engine control, model predictive control, sliding mode control, neural networks.Ding-Li Yu obtained B.Eng from Harbin Civil Engineering College, Harbin, China in 1981, M.Sc from Jilin University of Technology, Changchun, China in 1986 and PhD from Coventry University, U.K. in 1995, all in control engineering. He is currently a Reader in Process Control at Liverpool John Moores University, U.K. His current research interests are in process control, engine control, fault detection and adaptive neural nets. He is a member of SAFEPROCESS TC in IFAC and an associate editor of the IJMIC and the IJISS.
文摘In order to study the factors that influence the air fuel ratio(A/F), the amplitude and frequency of A/F fluctuation, to reform the control strategy, and to improve the efficiency of three way catalyst(TWC), a model of closed loop control system including the engine, air fuel mixing and transportation, oxygen sensor and controller, etc., is developed. Various factors that influence the A/F control are studied by simulation. The simulation results show that the reference voltage of oxygen sensor will influence the mean value of A/F ratio, the controller parameters will influence the amplitude of A/F fluctuation, and the operating conditions of the engine determine the frequency of A/F fluctuations, the amplitude of A/F fluctuation can be reduced to within demanded values by logical selection of the signal acquisition method and controller parameters. Higher A/F fluctuation frequency under high speed and load can be reduced through software delay in the controller. The A/F closed loop control system based on the simulation results, accompanied with a rare earth element TWC, gives a better efficiency of conversion against harmful emissions.
文摘The fuel-air cloud resulting from an accidental discharge event is normally irregular in shape and varying in concentration. Performance of dispersion simulations using the computational fluid dynamics (CFD)-based tool FLACS can get an uneven and irregular cloud. For the performance of gas explosion study with FLACS, the equivalent stoichiometric fuel-air cloud concept is widely applied to get a representative distribution of explosion loads. The Q9 cloud model that is employed in FLACS is an equivalent fuel-air cloud representation, in which the laminar burning velocity with first order SL and volume expansion ratio are taken into consideration. However, during an explosion in congested areas, the main part of the combustion involves turbulent flame propagation. Hence, to give a more reasonable equivalent fuel-air size, the turbulent burning velocity must be taken into consideration. The paper presents a new equivalent cloud method using the turbulent burning velocity, which is described as a function of SL, deduced from the TNO multi- energy method.
文摘Biomass Fuel (BMF) refers to burned plant or animal material;wood, charcoal, dung and crop residues which account for more than half of domestic energy in most developing countries and for as much as 95% in low income countries. It is estimated that about 3 billion people in the world rely on biomass fuel for cooking, heating and lighting. The biomass fuel chain includes gathering, transportation, processing and combustion. These processes are predominantly managed by women where they work as gatherers, processors, carriers or transporters and also as end-users or cooks. Thus, they suffer health hazards at all stages of the biomass fuel chain. The main objective was to assess health effects related to the use of Biomass fuel and indoor air pollution in Kapkokwon Sub-location, Kericho County, Kenya from March to May, 2013. The study area was Kapkokwon sub location, Bomet County, Kenya. The study population was 202 households. Primary females of the household were the target group as they managed the biomass chain. A quantitative descriptive cross-sectional study design was adopted to assess the health effects associated to the use of biomass fuel and indoor air pollution. The research revealed that women suffer different type of physical ailments due to the biomass fuel chain. Physical exhaustion (86%), neck aches (78%), headaches (34%), knee aches (30%) and back aches (16%) were reported as the principal health effects associated with the third stage of the biomass fuel chain. Irritation of the mucus membrane of the eyes, nose and throat (100%), coughing (100%), burns (42%), shortness of breath (38%) and exacerbation of asthma (2%) were identified as principal health effects associated with the fourth stage of the biomass fuel chain (cooking). As a result of the detrimental impact of indoor air pollution (IAP) on health and mortality, many governments, non-governmental organization and international organizations should develop strategies aimed at reducing indoor air pollution. The strategies to include subsidization of cleaner fuel technologies, development, promotion and subsidization of improved cooking stoves, use of solar thermal cookers and solar hot water heaters, processing biomass fuel to make them cleaner, modifying user behavior and improved household design.
文摘The relative characteristics of motion of the fuel and shell upon launching is analyzed. By means of mechanical analysis and calculation, it is proposed that relative motion exists not only in the ranges between the fuel and shell of the warhead, but also in the fuel in different positions. The result of study indicates that the position of the fuel in the warhead has a marked influence on the relative motion, while the frictional coefficient between the fuel and shell has less influence upon it.