This article reports on the development of a simple two-step lithography process for double barrier quantum well(DBQW)InGaAs/AlAs resonant tunneling diode(RTD)on a semi-insulating indium phosphide(InP)substrate using ...This article reports on the development of a simple two-step lithography process for double barrier quantum well(DBQW)InGaAs/AlAs resonant tunneling diode(RTD)on a semi-insulating indium phosphide(InP)substrate using an air-bridge technology.This approach minimizes processing steps,and therefore the processing time as well as the required resources.It is particularly suited for material qualification of new epitaxial layer designs.A DC performance comparison between the proposed process and the conventional process shows approximately the same results.We expect that this novel technique will aid in the recent and continuing rapid advances in RTD technology.展开更多
An InP-based single-heterojunction bipolar transistor (SHBT) with base μ-bndge and emitter air-bridge is reported. Because those bridges reduce parasitic capacitance greatly, the cutoff frequency fT of the 2μm ...An InP-based single-heterojunction bipolar transistor (SHBT) with base μ-bndge and emitter air-bridge is reported. Because those bridges reduce parasitic capacitance greatly, the cutoff frequency fT of the 2μm ×12.5μm InP SHBT without de-embedding reaches 178GHz. It is critical in high-speed low power applications,such as OEIC receivers and analog-to-digital converters.展开更多
The coupling effect of air-bridges on broadband spiral inductors in SiC-based MMIC technology has been investigated deeply. The fabricated 1-nH spiral inductor on SiC substrate demonstrates a self-resonant frequency o...The coupling effect of air-bridges on broadband spiral inductors in SiC-based MMIC technology has been investigated deeply. The fabricated 1-nH spiral inductor on SiC substrate demonstrates a self-resonant frequency of 51.6 GHz, with a peak Q-fact of 12.14 at 22.1 GHz. From the S-parameters measurements, the exponential decay phenomenon is observed for L, Q-factor, and SRF with the air-bridge height decreasing, and an analytic expression is concluded to exactly fit the measured data which can be used to predict the performance of the spiral inductor. All the coefficients in the formula have specific meaning. By means of establishing the lumped model, the parasitic coupling capacitance of the air-bridge has been extracted and presents the exponential decay with the air-bridge heights decreasing which indicates that this capacitor is directly related to the coupling effect of the air-bridge. Through the electromagnetic field distribution simulation, the details of the electric field around the air-bridge have been presented which demonstrate the formation and the variation principles of the coupling effect.展开更多
Superconducting coplanar waveguide(CPW) can be widely used as two-dimensional(2 D) resonator, transmission line or feedline, providing an important component for superconducting quantum circuit which is a promisin...Superconducting coplanar waveguide(CPW) can be widely used as two-dimensional(2 D) resonator, transmission line or feedline, providing an important component for superconducting quantum circuit which is a promising candidate for quantum information processing. Due to the discontinuities and asymmetries in the ground planes, CPW usually exhibits the spurious resonance, which is a common source of decoherence in circuit quantum electrodynamics experiments. To mitigate the spurious resonance, we fabricated superconducting aluminum air-bridges on Nb CPW. The fabricated airbridges are approximately 3 m high and up to 120 m long. Compared with other methods, the fabrication procedures of our air-bridges are simpler, and the air-bridge can withstand strong ultrasound.展开更多
An AlGaN/GaN high-electron mobility transistor(HEMT) with a novel source-connected air-bridge field plate(AFP) is experimentally verified.The device features a metal field plate that jumps from the source over the...An AlGaN/GaN high-electron mobility transistor(HEMT) with a novel source-connected air-bridge field plate(AFP) is experimentally verified.The device features a metal field plate that jumps from the source over the gate region and lands between the gate and drain.When compared to a similar size HEMT device with a conventional field plate(CFP) structure,the AFP not only minimizes the parasitic gate to source capacitance,but also exhibits higher OFF-state breakdown voltage and one order of magnitude lower drain leakage current.In a device with a gate to drain distance of 6 μm and a gate length of 0.8 μm,three times higher forward blocking voltage of 375 V was obtained at VGS =-5 V.In contrast,a similar sized HEMT with a CFP can only achieve a breakdown voltage no higher than 125 V using this process,regardless of device dimensions.Moreover,a temperature coefficient of 0 V/K for the breakdown voltage is observed.However,devices without a field plate(no FP) and with an optimized conventional field plate(CFP) exhibit breakdown voltage temperature coefficients of-0.113 V/K and-0.065 V/K,respectively.展开更多
We have fabricated In0.53Ga0.47As/AlAs/InP resonant tunneling diodes(RTDs) based on the air-bridge technology by using electron beam lithography processing.The epitaxial layers of the RTD were grown on semiinsulatin...We have fabricated In0.53Ga0.47As/AlAs/InP resonant tunneling diodes(RTDs) based on the air-bridge technology by using electron beam lithography processing.The epitaxial layers of the RTD were grown on semiinsulating(100) InP substrates by molecular beam epitaxy.RTDs with a peak current density of 24.6 kA/cm^2 and a peak-to-valley current ratio of 8.6 at room temperature have been demonstrated.展开更多
We have designed an air-bridged PhC microcavity with high sensitivity and a high quality factor.The structure parameters of the microcavity are optimized by three-dimensional finite-difference time-domain method. We c...We have designed an air-bridged PhC microcavity with high sensitivity and a high quality factor.The structure parameters of the microcavity are optimized by three-dimensional finite-difference time-domain method. We compare the performance of a silicon-on-insulator PhC microcavity and an air-bridged PhC microcavity,and analyze the effect of the thickness of the slab and the radius of the defect hole on the performance of the air-bridged PhC microcavity.For a thinner slab and a larger defect hole,the sensitivity is higher while the quality factor is lower.For the air-bridged photonic crystal slab,the sensitivity can reach 320-nm/RIU(refractive index unit) while the quality factor keeps a relatively high value of 120 by selecting the proper slab thickness and the defect hole radius,respectively,when the refractive index is 1.33.This is meaningful for low-detection-limit biosensing.展开更多
基金funded by Horizon 2020 Future and Emerging Technologies ChipAI project under the grant agreement 828841.
文摘This article reports on the development of a simple two-step lithography process for double barrier quantum well(DBQW)InGaAs/AlAs resonant tunneling diode(RTD)on a semi-insulating indium phosphide(InP)substrate using an air-bridge technology.This approach minimizes processing steps,and therefore the processing time as well as the required resources.It is particularly suited for material qualification of new epitaxial layer designs.A DC performance comparison between the proposed process and the conventional process shows approximately the same results.We expect that this novel technique will aid in the recent and continuing rapid advances in RTD technology.
文摘An InP-based single-heterojunction bipolar transistor (SHBT) with base μ-bndge and emitter air-bridge is reported. Because those bridges reduce parasitic capacitance greatly, the cutoff frequency fT of the 2μm ×12.5μm InP SHBT without de-embedding reaches 178GHz. It is critical in high-speed low power applications,such as OEIC receivers and analog-to-digital converters.
基金supported by the National Natural Science Foundation of China(Grant Nos.61334002 and 61474091)the National High Technology Research and Development Program of China(Grant No.2015AA016801)
文摘The coupling effect of air-bridges on broadband spiral inductors in SiC-based MMIC technology has been investigated deeply. The fabricated 1-nH spiral inductor on SiC substrate demonstrates a self-resonant frequency of 51.6 GHz, with a peak Q-fact of 12.14 at 22.1 GHz. From the S-parameters measurements, the exponential decay phenomenon is observed for L, Q-factor, and SRF with the air-bridge height decreasing, and an analytic expression is concluded to exactly fit the measured data which can be used to predict the performance of the spiral inductor. All the coefficients in the formula have specific meaning. By means of establishing the lumped model, the parasitic coupling capacitance of the air-bridge has been extracted and presents the exponential decay with the air-bridge heights decreasing which indicates that this capacitor is directly related to the coupling effect of the air-bridge. Through the electromagnetic field distribution simulation, the details of the electric field around the air-bridge have been presented which demonstrate the formation and the variation principles of the coupling effect.
基金Project supported by the National Key Research and Development Program of China(Grant No.2016YFA0301802)the National Natural Science Foundation of China(Grant Nos.11474152,11274156,11504165,and 61521001)
文摘Superconducting coplanar waveguide(CPW) can be widely used as two-dimensional(2 D) resonator, transmission line or feedline, providing an important component for superconducting quantum circuit which is a promising candidate for quantum information processing. Due to the discontinuities and asymmetries in the ground planes, CPW usually exhibits the spurious resonance, which is a common source of decoherence in circuit quantum electrodynamics experiments. To mitigate the spurious resonance, we fabricated superconducting aluminum air-bridges on Nb CPW. The fabricated airbridges are approximately 3 m high and up to 120 m long. Compared with other methods, the fabrication procedures of our air-bridges are simpler, and the air-bridge can withstand strong ultrasound.
基金Project supported by the Delta Science & Technology Educational Development Program (Grant No. DREK2010001)the Zhejiang Provincial Natural Science Foundation of China for Distinguished Young Scholars (Grant No. R1100468)
文摘An AlGaN/GaN high-electron mobility transistor(HEMT) with a novel source-connected air-bridge field plate(AFP) is experimentally verified.The device features a metal field plate that jumps from the source over the gate region and lands between the gate and drain.When compared to a similar size HEMT device with a conventional field plate(CFP) structure,the AFP not only minimizes the parasitic gate to source capacitance,but also exhibits higher OFF-state breakdown voltage and one order of magnitude lower drain leakage current.In a device with a gate to drain distance of 6 μm and a gate length of 0.8 μm,three times higher forward blocking voltage of 375 V was obtained at VGS =-5 V.In contrast,a similar sized HEMT with a CFP can only achieve a breakdown voltage no higher than 125 V using this process,regardless of device dimensions.Moreover,a temperature coefficient of 0 V/K for the breakdown voltage is observed.However,devices without a field plate(no FP) and with an optimized conventional field plate(CFP) exhibit breakdown voltage temperature coefficients of-0.113 V/K and-0.065 V/K,respectively.
文摘We have fabricated In0.53Ga0.47As/AlAs/InP resonant tunneling diodes(RTDs) based on the air-bridge technology by using electron beam lithography processing.The epitaxial layers of the RTD were grown on semiinsulating(100) InP substrates by molecular beam epitaxy.RTDs with a peak current density of 24.6 kA/cm^2 and a peak-to-valley current ratio of 8.6 at room temperature have been demonstrated.
基金Project supported by the National Natural Science Foundation of China(Nos.60736037,60978067,60807010)the State Key Development Program for Basic Research of China(Nos.2009CB320300,2010CB934104)
文摘We have designed an air-bridged PhC microcavity with high sensitivity and a high quality factor.The structure parameters of the microcavity are optimized by three-dimensional finite-difference time-domain method. We compare the performance of a silicon-on-insulator PhC microcavity and an air-bridged PhC microcavity,and analyze the effect of the thickness of the slab and the radius of the defect hole on the performance of the air-bridged PhC microcavity.For a thinner slab and a larger defect hole,the sensitivity is higher while the quality factor is lower.For the air-bridged photonic crystal slab,the sensitivity can reach 320-nm/RIU(refractive index unit) while the quality factor keeps a relatively high value of 120 by selecting the proper slab thickness and the defect hole radius,respectively,when the refractive index is 1.33.This is meaningful for low-detection-limit biosensing.