This paper addresses the development and testing of a remotely controlled boat platform with an innovative air-ventilated hull. The application of air cavities on the underside of ship hulls is a promising means for r...This paper addresses the development and testing of a remotely controlled boat platform with an innovative air-ventilated hull. The application of air cavities on the underside of ship hulls is a promising means for reducing hydrodynamic drag and pollutant emissions and increasing marine transportation efficiency. Despite this concept's potential, design optimization and high-performance operation of novel air-cavity ships remain a challenging problem. Hull construction and sensor instrumentation of the model-scale air-cavity boat is described in the paper. The modular structure of the hull allows for easy modifications, and an electric propulsion unit enables self-propelled operation. The boat is controlled remotely via a radio transmission system. Results of initial tests are reported, including thrust, speed, and airflow rate in several loading conditions. The constructed platform can be used for optimizing air-cavity systems and testing other innovative hull designs. This system can be also developed into a high-performance unmanned boat.展开更多
Injecting air under hulls of marine vessels can lead to reduction of their hydrodynamic resistance.Since experimental development of air-assisted hulls usually requires a large number of tests,numerical simulations of...Injecting air under hulls of marine vessels can lead to reduction of their hydrodynamic resistance.Since experimental development of air-assisted hulls usually requires a large number of tests,numerical simulations of air-ventilated water flows can potentially accelerate the design process.In this study,computational modeling has been carried out for the previously tested simplified hull form with an air cavity formed behind a step.To achieve proper agreement with experimental results,it is established that a sufficiently fine numerical mesh needs to be generated at the cavity re-attachment to the hull and the sharpening treatment of the air-water interface must be included.It is also shown how the cavity length can be manipulated by changing inclination of the cavity-originating step.展开更多
基金Foundation item: Supported by the National Science Foundation (CMMI-1026264 and EEC-1157094).
文摘This paper addresses the development and testing of a remotely controlled boat platform with an innovative air-ventilated hull. The application of air cavities on the underside of ship hulls is a promising means for reducing hydrodynamic drag and pollutant emissions and increasing marine transportation efficiency. Despite this concept's potential, design optimization and high-performance operation of novel air-cavity ships remain a challenging problem. Hull construction and sensor instrumentation of the model-scale air-cavity boat is described in the paper. The modular structure of the hull allows for easy modifications, and an electric propulsion unit enables self-propelled operation. The boat is controlled remotely via a radio transmission system. Results of initial tests are reported, including thrust, speed, and airflow rate in several loading conditions. The constructed platform can be used for optimizing air-cavity systems and testing other innovative hull designs. This system can be also developed into a high-performance unmanned boat.
基金the U.S.National Science Foundation under Grant no.1800135.
文摘Injecting air under hulls of marine vessels can lead to reduction of their hydrodynamic resistance.Since experimental development of air-assisted hulls usually requires a large number of tests,numerical simulations of air-ventilated water flows can potentially accelerate the design process.In this study,computational modeling has been carried out for the previously tested simplified hull form with an air cavity formed behind a step.To achieve proper agreement with experimental results,it is established that a sufficiently fine numerical mesh needs to be generated at the cavity re-attachment to the hull and the sharpening treatment of the air-water interface must be included.It is also shown how the cavity length can be manipulated by changing inclination of the cavity-originating step.