A water loop variable refrigerant flow(WLVRF)air-conditioning system is designed to be applied in large-scale buildings in northern China.The system is energy saving and it is an integrated system consisting of a va...A water loop variable refrigerant flow(WLVRF)air-conditioning system is designed to be applied in large-scale buildings in northern China.The system is energy saving and it is an integrated system consisting of a variable refrigerant flow(VRF)air-conditioning unit,a water loop and an air source heat pump.The water loop transports energy among different regions in the buildings instead of refrigerant pipes,decreasing the scale of the VRF air-conditioning unit and improving the performance.Previous models for refrigerants and building loads are cited in this investigation.Mathematical models of major equipment and other elements of the system are established using the lumped parameter method based on the DATAFIT software and the MATLAB software.The performance of the WLVRF system is simulated.The initial investments and the running costs are calculated based on the results of market research.Finally,a contrast is carried out between the WLVRF system and the traditional VRF system.The results show that the WLVRF system has a better working condition and lower running costs than the traditional VRF system.展开更多
Variable-air-volume (VAV) air-conditioning system is a multi-variable system and has multi coupling control loops. While all of the control loops are working together, they interfere and influence each other. A multiv...Variable-air-volume (VAV) air-conditioning system is a multi-variable system and has multi coupling control loops. While all of the control loops are working together, they interfere and influence each other. A multivariable decoupling PID controller is designed for VAV air-conditioning system. Diagonal matrix decoupling method is employed to eliminate the coupling between the loop of supply air temperature and that of thermal-space air temperature. The PID controller parameters are optimized by means of an improved genetic algorithm in floating point representations to obtain better performance. The population in the improved genetic algorithm mutates before crossover, which is helpful for the convergence. Additionally the micro mutation algorithm is proposed and applied to improve the convergence during the later evolution. To search the best parameters, the optimized parameters ranges should be amplified 10 times the initial ideal parameters. The simulation and experiment results show that the decoupling control system is effective and feasible. The method can overcome the strong coupling feature of the system and has shorter governing time and less over-shoot than non-optimization PID control.展开更多
Energy performance assessment on central air-conditioning system is essential to optimize operating, reduce operating costs, improve indoor environmental quality, and determine whether the retrofitting of the equipmen...Energy performance assessment on central air-conditioning system is essential to optimize operating, reduce operating costs, improve indoor environmental quality, and determine whether the retrofitting of the equipment is necessary. But it is difficult to evaluate it reasonably and comprehensively due to its complexity. A "holistic" approach was discussed to evaluate the energy performance of central air-conditioning system for an extra-large commercial building in a subtropical city. All procedures were described in detail, including field investigation method, field measurement instruments, data processing and data analyzing. The main factors affecting energy consumption of air-conditioning system were analyzed and the annual cooling-energy use intensity of this building was calculated and also compared with other shopping malls and other types of buildings in Guangzhou. And COP(coefficient of performance) of chiller, water transfer factor of chilled water system and cooling water system were taken into consideration. At last, the thermal comfort and indoor air quality issues were addressed. The results show that the chilled water pumps are over-sized and the indoor environmental quality should be improved. The purpose of this work is to provide reference for energy performance assessment method for air-conditioning system.展开更多
The relevant standard requirements both in domestic and abroad provide the basis for designing air-conditioning system of railway vehicles present. However, there are great differences in the fresh air volume indicato...The relevant standard requirements both in domestic and abroad provide the basis for designing air-conditioning system of railway vehicles present. However, there are great differences in the fresh air volume indicators among different standards requirements, and the requirements of each vehicle procurement contracts are also different. The design of air-conditioning become difficult above these. In this paper, the fresh air volume of different type railway vehicles is analyzed from health and equipment electricity consumption according to the railway vehicles air-conditioning system standard requirements in domestic and abroad. Some advises for designing air-conditioning system of railway vehicles through the fresh air volume calculation and comparison for domestic air-conditioning system of railway vehicles was provided.展开更多
Two building factors-a longer thermal lag of more than one hour for building envelops and a lag of indoor radiation to convert into cooling load-have impact on the instantaneous heat input and instantaneous cooling lo...Two building factors-a longer thermal lag of more than one hour for building envelops and a lag of indoor radiation to convert into cooling load-have impact on the instantaneous heat input and instantaneous cooling load.So the two factors should be taken into account when selecting the weather parameters for air-conditioning system design.This paper developed a new statistic method for the rational selection of coincident solar irradiance,dry-bulb and wet-bulb temperatures.The method was applied to historic weather records of 25 years in Hong Kong to generate coincident design weather data.And the results show that traditional design solar irradiance,dry-bulb and wet-bulb temperatures may be significantly overestimated in many conditions,and the design weather data for the three different constructions is not kept constant.展开更多
The aim of this research was to study and design a solid desiccant dehumidification system suitable for tropical climate to reduce the latent load of air-conditioning system and improve the thermal comfort. Different ...The aim of this research was to study and design a solid desiccant dehumidification system suitable for tropical climate to reduce the latent load of air-conditioning system and improve the thermal comfort. Different dehumidifiers such as desiccant column and desiccant wheel were investigated. The ANSYS and TRASYS software were used to predict the results of dehumidifiers and the desiccant cooling systems, respectively. The desiccant bed contained approximately 15 kg of silica-gel, with 3 mm average diameter. Results indicated that the pressure drop and the adsorption rate of desiccant column are usually higher than those of the desiccant wheel. The feasible and practical adsorption rate of desiccant wheel was 0.102 kgw/h at air flow rate 1.0 kg/min, regenerated air temperature of 55?C and at a wheel speed of 2.5 rpm. The humidity ratio of conditioning space and cooling load of split-type air conditioner was decreased to 0.002 kgw/kgda (14%) and 0.71 kWth (19.26%), respectively. Consequently, the thermal comfort was improved from 0.5 PMV (10.12% PPD) to 0.3 PMV (7.04% PPD).展开更多
An energy-saving control strategy based on predictive control for central air-conditioning systems is proposed in this paper. The cold load model is developed to describe the dynamic characteristics of temperature con...An energy-saving control strategy based on predictive control for central air-conditioning systems is proposed in this paper. The cold load model is developed to describe the dynamic characteristics of temperature control systems, and then parameters in the cold load model and in the central air-conditioning system model are estimated. Generalized predictive control (GPC) is used to establish an optimization model to minimize the consumption of energy and the control error of temperature. The simulated annealing (SA) algorithm, combined with quadratic programming, is adopted to solve the optimal problem. Contrasted with the simulation of traditional PID control, the results prove the effectiveness of this proposed strategy.展开更多
An explosion-proof dual throttling air-conditioning system was put forward to solve the heat dissipation and internal dewing problems of explosion-proof frequency converter in the underground coal mine. This study inv...An explosion-proof dual throttling air-conditioning system was put forward to solve the heat dissipation and internal dewing problems of explosion-proof frequency converter in the underground coal mine. This study investigated the feasibility and benefits of explosion-proof dual throttling cooling and dehumidification air-conditioning system applied to the explosion-proof frequency converter. The physical model of dual throttling air-conditioning system was established and its performance parameter was described by mathematical method. The design calculation of the system has also been done. The experimental result showed that the system reached the steady state at the refrigeration mode after running 45 min, and the maximum internal temperature of the flame-proof cavity was 31.0 ℃. The system reached the steady state at the dehumidification mode after running 37 min. The maximum internal relative humidity and temperature of the flame-proof cavity were 33.4% and 36.3 ℃, respectively. Therefore, the proposed system had excellent ability of heat dissipation and avoided internal dewing. Compared with water cooling system, it was more energy-saving and economical. The airflow field of dual throttling air-conditioning system was also studied by CFD simulation. It was found that the result of CFD numerical simulation was highly consistent with the experimental data.展开更多
The artificial intelligence is applied to the simulation of the automotive air-conditioning system ( AACS )According to the system's characteristics a model of AACS, based on neural network, is developed. Differen...The artificial intelligence is applied to the simulation of the automotive air-conditioning system ( AACS )According to the system's characteristics a model of AACS, based on neural network, is developed. Different control methods of AACS are discussed through simulation based on this model. The result shows that the neural- fuzzy control is the best one compared with the on-off control and conventional fuzzy control method.It can make the compartment's temperature descend rapidly to the designed temperature and the fluctuation is small.展开更多
Internet of Things(IoT)technologies are increasingly implemented in buildings as the cost-effective smart sens-ing infrastructure of building automation systems(BASs).They are also dispersed computing resources for no...Internet of Things(IoT)technologies are increasingly implemented in buildings as the cost-effective smart sens-ing infrastructure of building automation systems(BASs).They are also dispersed computing resources for novel distributed optimal control approaches.However,wireless communication networks are critical to fulfill these tasks with the performance influenced by inherent uncertainties in networks,e.g.,unpredictable occurrence of link failures.Centralized and hierarchical distributed approaches are vulnerable against link failure,while the robustness of fully distributed approaches depends on the algorithms adopted.This study therefore proposes a fully distributed robust optimal control approach for air-conditioning systems considering uncertainties of com-munication link in IoT-enabled BASs.The distributed algorithm is adopted that agents know their out-neighbors only.Agents directly coordinate with the connected neighbors for global optimization.Tests are conducted to test and validate the proposed approach by comparing with existing approaches,i.e.,the centralized,the hierarchical distributed and the fully distributed approaches.Results show that different approaches are vulnerable against to uncertainties of communication link to different extents.The proposed approach always guarantees the optimal control performance under normal conditions and conditions with link failures,verifying its high robustness.It also has low computation complexity and high optimization efficiency,thus applicable on IoT-enabled BASs.展开更多
Variable air volume(VAV)air-conditioning(AC)systems are widely employed to achieve a comfortable room thermal and humid environment depending on its better regulation performance and energy efficiency.In the single co...Variable air volume(VAV)air-conditioning(AC)systems are widely employed to achieve a comfortable room thermal and humid environment depending on its better regulation performance and energy efficiency.In the single coil VAV AC system,conventional proportional-integral(PI)control algorithm is usually adopted to track the set-points of the room temperature and humidity by regulating the supply air flow rate and the chilled water flow rate,respectively.However,the control performance is usually not good due to the high coupling of the heat and mass transfer in the air-handling unit(AHU).A model-based control method is developed to realize the decoupling control of the room temperature and humidity according to the bilinear characteristics of the temperature and humidity variation.In this control method,a bilinear room temperature controller is used to track the room temperature set-point based on the real-time cooling load,while a room humidity controller is used to track the room humidity set-point depending on the real-time humidity load.The control performance was validated in a simulated VAV AC system.The test results show that comparing with the conventional PI control,the room temperature and humidity are controlled much more robustly and accurately by using the proposed model-based control method.展开更多
It is of great importance to improve the energy performance of the air-conditioning system for building energy conversation. Entransy provides a novel perspective to investigate the losses existing in the air-conditio...It is of great importance to improve the energy performance of the air-conditioning system for building energy conversation. Entransy provides a novel perspective to investigate the losses existing in the air-conditioning system. The progress of entransy analysis in the air-conditioning system is comprehensively investigated in the present study. Firstly missions and characteris- tics of the air-conditioning system are analyzed with emphasis on heat or mass transfer process. It is found that reducing the temperature difference, i.e. reducing the entransy dissipation helps to improve the performance. Entransy dissipations and thermal resistances of typical transfer processes in the air-conditioning system are presented. Characteristics of sensible heat transfer process and coupled heat and mass transfer processes are researched in terms of entransy dissipation analysis. Reasons leading to entransy dissipation are also clarified with the help of unmatched coefficient 4. Principles for reducing the entransy dissipation and constructing a high temperature cooling system are summarized on the basis of case studies in typical handling processes. It's recommended that reducing mixing process, improving match properties are main approaches to reduce the entransy dissipation. The present analysis is beneficial to casting light on the essence of the air-conditioning system and proposing novel approaches for performance optimization.展开更多
Air-conditioning system consumes a large amount of electricity in residential sections,and its efficiency has drawn extensive concerns in energy-conscious era.Liquid-vapor separation is a heat transfer enhancement tec...Air-conditioning system consumes a large amount of electricity in residential sections,and its efficiency has drawn extensive concerns in energy-conscious era.Liquid-vapor separation is a heat transfer enhancement technology that can effectively improve the performance of the heat exchanger as well as the system.In this paper,a regular air-conditioning system as the baseline(system-A)and other two air-conditioning systems with liquid-vapor separation heat exchanger(system-B and system-C)are comparatively studied.The component behaviors and system performances are deeply explored by using advanced exergy analysis with a focus on quantifying how much consequences come from the variants,i.e.liquid-vapor separation.The results indicate that the system-B has large reduced exergy destruction from the compressor and condenser at cooling mode relative to the system-A.The system-C has mainly diminished exergy destruction in the compressor caused by other components relative to the system-B.At heating mode,the system-C has an enhanced system exergy efficiency of 9.6%over the system-A,and it also has the decreased avoidable exergy destruction which is dominantly contributed by the compressor and evaporator.Furthermore,it is found that liquid-vapor separation mainly benefits the compressor and outdoor heat exchanger where it locates,leading to the system performance improvements.展开更多
The knowledge representation mode and inference control strategy were analyzed according to the specialties of air-conditioning cooling/heating sources selection. The constructing idea and working procedure for knowle...The knowledge representation mode and inference control strategy were analyzed according to the specialties of air-conditioning cooling/heating sources selection. The constructing idea and working procedure for knowledge base and inference engine were proposed while the realization technique of the C language was discussed. An intelligent decision support system (IDSS) model based on such knowledge representation and inference mechanism was developed by domain engineers. The model was verified to have a small kernel and powerful capability in list processing and data driving, which was successfully used in the design of a cooling/heating sources system for a large-sized office building.展开更多
Central air-conditioning systems predominantly operate under partial load conditions.The optimization of a differential pressure setpoint in the chilled water system of a central air-conditioning system leads to a mor...Central air-conditioning systems predominantly operate under partial load conditions.The optimization of a differential pressure setpoint in the chilled water system of a central air-conditioning system leads to a more energy-efficient operation.Determining the differential pressure adjustment value based on the terminal user's real-time demand is one of the critical issues to be addressed during the optimal control process.Furthermore,the online application of the differential pressure setpoint optimization method needs to be considered,along with the stability of the system.This paper proposes a variable differential pressure reset method with an adaptive adjustment algorithm based on the Mamdani fuzzy model.The proposed method was compared with differential pressure reset methods with reference to the chilled water differential temperature,outdoor temperature,and linear model based on the adjustment algorithm.The energy-saving potential,temperature control effect,and avoidance of the most unfavorable thermodynamic loop effects of the four methods were investigated experimentally.The results indicated that,while satisfying the terminal user's energy supply demand and ensuring the avoidance of the most unfavorable thermodynamic loop,the proposed adaptive adjustment algorithm also decreased the differential pressure setpoint value by 25.1%—59.1%and achieved energy savings of 10.6%-45.0%.By monitoring the valve position and supply air temperature of each terminal user,the proposed method exhibited suitable online adaptability and could be flexibly applied to buildings with random load changes.展开更多
To explore the relationship between summer office set air-conditioning temperature and energy consumption related to air conditioning use to provide human thermal comfort,a comparison experiment was conducted in three...To explore the relationship between summer office set air-conditioning temperature and energy consumption related to air conditioning use to provide human thermal comfort,a comparison experiment was conducted in three similar offices at temperatures of 24,26 and 28 ℃ respectively. A thermal comfort questionnaire survey was conducted. It is demonstrated that air-conditioner energy consumption at the set temperature of 28 ℃ is 113% and 271% lower than at 26 ℃ and 24 ℃,respectively. A linear relationship exists between air-conditioner energy consumption and the indoor and outdoor temperature difference. When comfortably dressed,over 80% of research participants accept the set temperature of 28 ℃. The regression analysis leads to a neutral temperature of 26.2 ℃ and an acceptable temperature of 28.2 ℃ for over 80% of the research participants subjects,indicating that the current 26 ℃ set temperature for offices in summer,required by Chinese General Office of the State Council,can be increased to 28 ℃. Moreover,analysis of predicted mean vote(PMV) index shows that a set temperature of 27 ℃,not 26 ℃,is sufficiently comfortable for office staff wearing long-sleeve shirts,long pants and leather shoes.展开更多
This paper presented an entropy evaluation method for the influences of condense heat recovery system on the environment.Aiming at the damage of the condense heat to the environment,an entropy of resource loss and an ...This paper presented an entropy evaluation method for the influences of condense heat recovery system on the environment.Aiming at the damage of the condense heat to the environment,an entropy of resource loss and an emission entropy from the condense heat recovery system in the air conditioning refrigerating machine were introduced.For the evaluation of the entropies,we developed a new algorithm for the parameter identification,called the composite influence coefficient,based on the Least Squares Support Vector Machine method.By simulation,the numerical experiments shows that the Least Squares Support Vector Machine method is one of the powerful methods for the parameter identification to compute the damage entropy of the condense heat,with the largest training error being-0.025(the relative error being-3.56%),and the biggest test error being 0.015(the relative error being 2.5%).展开更多
As the conceptual design of air-conditioning is done using the theory of Quality Function Deployment (QFD),cus- tomer requirements should be understood and the product competitive power be analyzed as exactly as possi...As the conceptual design of air-conditioning is done using the theory of Quality Function Deployment (QFD),cus- tomer requirements should be understood and the product competitive power be analyzed as exactly as possible for new product de- signing.Lots of information in the process of this research is fuzzy and uncertain,but traditional QFD can not deal with it well. Fuzzy theory can solve the problem.So a fuzzy model for analyzing product competitive power is formulated in this paper to im- prove traditional QFD,after that it is applied to analyze air-conditioning competitive power.When air-conditioning competitive power is analyzed using this model,firstly the importance weight of the customer requirements o fair-conditioning is determined us- ing the Analytic Hierarchy Process (AHP) weighting process,then air-conditloning competitive power is evaluated using fuzzy comprehensive evaluation.It is proved that the model is feasible and has good applicability.展开更多
Solar energy powered organic Rankine cycle vapor compression cycle(ORC-VCC)is a good alternative to convert solar heat into a cooling effect.In this study,an ORC-VCC system driven by solar energy combined with electri...Solar energy powered organic Rankine cycle vapor compression cycle(ORC-VCC)is a good alternative to convert solar heat into a cooling effect.In this study,an ORC-VCC system driven by solar energy combined with electric motor is proposed to ensure smooth operation under the conditions that solar radiation is unstable and discontinuous,and an office building located in Guangzhou,China is selected as a case study.The results show that beam solar radiation and generation temperature have considerable effects on the system performance.There is an optimal generation temperature at which the system achieves optimum performance.Also,as a key indicator,the cooling power per square meter collector should be considered in the hybrid solar cooling system in design process.Compared to the vapor compression cooling system,the hybrid cooling system can save almost 68.23%of electricity consumption.展开更多
Based on analysis of the reason and process of condensation on ceiling radiant cooling panels, two kinds of arrangement of detectors are put forward. The physical model is established, the results show that detectors ...Based on analysis of the reason and process of condensation on ceiling radiant cooling panels, two kinds of arrangement of detectors are put forward. The physical model is established, the results show that detectors are arranged as the form of triangle is more suitable. It can not only satisfy the use requirement but also it is economical and practical. Finally we can conclude that the inlet water temperature 0.5°C higher than dew point temperature is safe and reliable.展开更多
文摘A water loop variable refrigerant flow(WLVRF)air-conditioning system is designed to be applied in large-scale buildings in northern China.The system is energy saving and it is an integrated system consisting of a variable refrigerant flow(VRF)air-conditioning unit,a water loop and an air source heat pump.The water loop transports energy among different regions in the buildings instead of refrigerant pipes,decreasing the scale of the VRF air-conditioning unit and improving the performance.Previous models for refrigerants and building loads are cited in this investigation.Mathematical models of major equipment and other elements of the system are established using the lumped parameter method based on the DATAFIT software and the MATLAB software.The performance of the WLVRF system is simulated.The initial investments and the running costs are calculated based on the results of market research.Finally,a contrast is carried out between the WLVRF system and the traditional VRF system.The results show that the WLVRF system has a better working condition and lower running costs than the traditional VRF system.
基金Supported by Key Laboratory of Condition Monitoring and Control for Power Plant Equipment of Ministry of Education of China
文摘Variable-air-volume (VAV) air-conditioning system is a multi-variable system and has multi coupling control loops. While all of the control loops are working together, they interfere and influence each other. A multivariable decoupling PID controller is designed for VAV air-conditioning system. Diagonal matrix decoupling method is employed to eliminate the coupling between the loop of supply air temperature and that of thermal-space air temperature. The PID controller parameters are optimized by means of an improved genetic algorithm in floating point representations to obtain better performance. The population in the improved genetic algorithm mutates before crossover, which is helpful for the convergence. Additionally the micro mutation algorithm is proposed and applied to improve the convergence during the later evolution. To search the best parameters, the optimized parameters ranges should be amplified 10 times the initial ideal parameters. The simulation and experiment results show that the decoupling control system is effective and feasible. The method can overcome the strong coupling feature of the system and has shorter governing time and less over-shoot than non-optimization PID control.
基金Project(2011B061200043)supported by the Guangdong Provincial Department of Science and Technology,China
文摘Energy performance assessment on central air-conditioning system is essential to optimize operating, reduce operating costs, improve indoor environmental quality, and determine whether the retrofitting of the equipment is necessary. But it is difficult to evaluate it reasonably and comprehensively due to its complexity. A "holistic" approach was discussed to evaluate the energy performance of central air-conditioning system for an extra-large commercial building in a subtropical city. All procedures were described in detail, including field investigation method, field measurement instruments, data processing and data analyzing. The main factors affecting energy consumption of air-conditioning system were analyzed and the annual cooling-energy use intensity of this building was calculated and also compared with other shopping malls and other types of buildings in Guangzhou. And COP(coefficient of performance) of chiller, water transfer factor of chilled water system and cooling water system were taken into consideration. At last, the thermal comfort and indoor air quality issues were addressed. The results show that the chilled water pumps are over-sized and the indoor environmental quality should be improved. The purpose of this work is to provide reference for energy performance assessment method for air-conditioning system.
文摘The relevant standard requirements both in domestic and abroad provide the basis for designing air-conditioning system of railway vehicles present. However, there are great differences in the fresh air volume indicators among different standards requirements, and the requirements of each vehicle procurement contracts are also different. The design of air-conditioning become difficult above these. In this paper, the fresh air volume of different type railway vehicles is analyzed from health and equipment electricity consumption according to the railway vehicles air-conditioning system standard requirements in domestic and abroad. Some advises for designing air-conditioning system of railway vehicles through the fresh air volume calculation and comparison for domestic air-conditioning system of railway vehicles was provided.
文摘Two building factors-a longer thermal lag of more than one hour for building envelops and a lag of indoor radiation to convert into cooling load-have impact on the instantaneous heat input and instantaneous cooling load.So the two factors should be taken into account when selecting the weather parameters for air-conditioning system design.This paper developed a new statistic method for the rational selection of coincident solar irradiance,dry-bulb and wet-bulb temperatures.The method was applied to historic weather records of 25 years in Hong Kong to generate coincident design weather data.And the results show that traditional design solar irradiance,dry-bulb and wet-bulb temperatures may be significantly overestimated in many conditions,and the design weather data for the three different constructions is not kept constant.
文摘The aim of this research was to study and design a solid desiccant dehumidification system suitable for tropical climate to reduce the latent load of air-conditioning system and improve the thermal comfort. Different dehumidifiers such as desiccant column and desiccant wheel were investigated. The ANSYS and TRASYS software were used to predict the results of dehumidifiers and the desiccant cooling systems, respectively. The desiccant bed contained approximately 15 kg of silica-gel, with 3 mm average diameter. Results indicated that the pressure drop and the adsorption rate of desiccant column are usually higher than those of the desiccant wheel. The feasible and practical adsorption rate of desiccant wheel was 0.102 kgw/h at air flow rate 1.0 kg/min, regenerated air temperature of 55?C and at a wheel speed of 2.5 rpm. The humidity ratio of conditioning space and cooling load of split-type air conditioner was decreased to 0.002 kgw/kgda (14%) and 0.71 kWth (19.26%), respectively. Consequently, the thermal comfort was improved from 0.5 PMV (10.12% PPD) to 0.3 PMV (7.04% PPD).
文摘An energy-saving control strategy based on predictive control for central air-conditioning systems is proposed in this paper. The cold load model is developed to describe the dynamic characteristics of temperature control systems, and then parameters in the cold load model and in the central air-conditioning system model are estimated. Generalized predictive control (GPC) is used to establish an optimization model to minimize the consumption of energy and the control error of temperature. The simulated annealing (SA) algorithm, combined with quadratic programming, is adopted to solve the optimal problem. Contrasted with the simulation of traditional PID control, the results prove the effectiveness of this proposed strategy.
基金Supported by the National Basic Research Program of China("973"Program,No.2009CB219907)
文摘An explosion-proof dual throttling air-conditioning system was put forward to solve the heat dissipation and internal dewing problems of explosion-proof frequency converter in the underground coal mine. This study investigated the feasibility and benefits of explosion-proof dual throttling cooling and dehumidification air-conditioning system applied to the explosion-proof frequency converter. The physical model of dual throttling air-conditioning system was established and its performance parameter was described by mathematical method. The design calculation of the system has also been done. The experimental result showed that the system reached the steady state at the refrigeration mode after running 45 min, and the maximum internal temperature of the flame-proof cavity was 31.0 ℃. The system reached the steady state at the dehumidification mode after running 37 min. The maximum internal relative humidity and temperature of the flame-proof cavity were 33.4% and 36.3 ℃, respectively. Therefore, the proposed system had excellent ability of heat dissipation and avoided internal dewing. Compared with water cooling system, it was more energy-saving and economical. The airflow field of dual throttling air-conditioning system was also studied by CFD simulation. It was found that the result of CFD numerical simulation was highly consistent with the experimental data.
文摘The artificial intelligence is applied to the simulation of the automotive air-conditioning system ( AACS )According to the system's characteristics a model of AACS, based on neural network, is developed. Different control methods of AACS are discussed through simulation based on this model. The result shows that the neural- fuzzy control is the best one compared with the on-off control and conventional fuzzy control method.It can make the compartment's temperature descend rapidly to the designed temperature and the fluctuation is small.
基金supported by a collaborative research fund(C5018-20G)of the Research Grant Council(RGC)of the Hong Kong SAR and a project of strategic importance of The Hong Kong Poly-technic University.
文摘Internet of Things(IoT)technologies are increasingly implemented in buildings as the cost-effective smart sens-ing infrastructure of building automation systems(BASs).They are also dispersed computing resources for novel distributed optimal control approaches.However,wireless communication networks are critical to fulfill these tasks with the performance influenced by inherent uncertainties in networks,e.g.,unpredictable occurrence of link failures.Centralized and hierarchical distributed approaches are vulnerable against link failure,while the robustness of fully distributed approaches depends on the algorithms adopted.This study therefore proposes a fully distributed robust optimal control approach for air-conditioning systems considering uncertainties of com-munication link in IoT-enabled BASs.The distributed algorithm is adopted that agents know their out-neighbors only.Agents directly coordinate with the connected neighbors for global optimization.Tests are conducted to test and validate the proposed approach by comparing with existing approaches,i.e.,the centralized,the hierarchical distributed and the fully distributed approaches.Results show that different approaches are vulnerable against to uncertainties of communication link to different extents.The proposed approach always guarantees the optimal control performance under normal conditions and conditions with link failures,verifying its high robustness.It also has low computation complexity and high optimization efficiency,thus applicable on IoT-enabled BASs.
基金This work presented in this paper is financially supported by a grant(No.51678263)of National Science Foundation of China.
文摘Variable air volume(VAV)air-conditioning(AC)systems are widely employed to achieve a comfortable room thermal and humid environment depending on its better regulation performance and energy efficiency.In the single coil VAV AC system,conventional proportional-integral(PI)control algorithm is usually adopted to track the set-points of the room temperature and humidity by regulating the supply air flow rate and the chilled water flow rate,respectively.However,the control performance is usually not good due to the high coupling of the heat and mass transfer in the air-handling unit(AHU).A model-based control method is developed to realize the decoupling control of the room temperature and humidity according to the bilinear characteristics of the temperature and humidity variation.In this control method,a bilinear room temperature controller is used to track the room temperature set-point based on the real-time cooling load,while a room humidity controller is used to track the room humidity set-point depending on the real-time humidity load.The control performance was validated in a simulated VAV AC system.The test results show that comparing with the conventional PI control,the room temperature and humidity are controlled much more robustly and accurately by using the proposed model-based control method.
基金supported by National Natural Science Foundation of China(Grant Nos.51422808&51521005)the National Science&Technology Pillar Program during the 12th Five-year Plan Period(Grant No.2014BAJ02B01)the China Postdoctoral Science Foundation(Grant No.2015M570107)
文摘It is of great importance to improve the energy performance of the air-conditioning system for building energy conversation. Entransy provides a novel perspective to investigate the losses existing in the air-conditioning system. The progress of entransy analysis in the air-conditioning system is comprehensively investigated in the present study. Firstly missions and characteris- tics of the air-conditioning system are analyzed with emphasis on heat or mass transfer process. It is found that reducing the temperature difference, i.e. reducing the entransy dissipation helps to improve the performance. Entransy dissipations and thermal resistances of typical transfer processes in the air-conditioning system are presented. Characteristics of sensible heat transfer process and coupled heat and mass transfer processes are researched in terms of entransy dissipation analysis. Reasons leading to entransy dissipation are also clarified with the help of unmatched coefficient 4. Principles for reducing the entransy dissipation and constructing a high temperature cooling system are summarized on the basis of case studies in typical handling processes. It's recommended that reducing mixing process, improving match properties are main approaches to reduce the entransy dissipation. The present analysis is beneficial to casting light on the essence of the air-conditioning system and proposing novel approaches for performance optimization.
基金supported by State Key Program of National Natural Science Foundation of China(51736005)Science and Technology Program of Guangzhou(201704030108)+1 种基金Foshan Municipal Science and Technology Bureau Project(2015IT100162)Guangdong Special Support Program(2017TX04N371)。
文摘Air-conditioning system consumes a large amount of electricity in residential sections,and its efficiency has drawn extensive concerns in energy-conscious era.Liquid-vapor separation is a heat transfer enhancement technology that can effectively improve the performance of the heat exchanger as well as the system.In this paper,a regular air-conditioning system as the baseline(system-A)and other two air-conditioning systems with liquid-vapor separation heat exchanger(system-B and system-C)are comparatively studied.The component behaviors and system performances are deeply explored by using advanced exergy analysis with a focus on quantifying how much consequences come from the variants,i.e.liquid-vapor separation.The results indicate that the system-B has large reduced exergy destruction from the compressor and condenser at cooling mode relative to the system-A.The system-C has mainly diminished exergy destruction in the compressor caused by other components relative to the system-B.At heating mode,the system-C has an enhanced system exergy efficiency of 9.6%over the system-A,and it also has the decreased avoidable exergy destruction which is dominantly contributed by the compressor and evaporator.Furthermore,it is found that liquid-vapor separation mainly benefits the compressor and outdoor heat exchanger where it locates,leading to the system performance improvements.
文摘The knowledge representation mode and inference control strategy were analyzed according to the specialties of air-conditioning cooling/heating sources selection. The constructing idea and working procedure for knowledge base and inference engine were proposed while the realization technique of the C language was discussed. An intelligent decision support system (IDSS) model based on such knowledge representation and inference mechanism was developed by domain engineers. The model was verified to have a small kernel and powerful capability in list processing and data driving, which was successfully used in the design of a cooling/heating sources system for a large-sized office building.
基金support provided by the National Key Research and Development Project of China(No.2017YFC0704100,under the title New Generation Intelligent Building Platform Techniques)Liaoning Natural Science Foundation Guidance Plan(No.20180551057)+1 种基金Dalian High-level Talent Innovation Support Program(Youth Technology Star)(No.2017RQ099)Fundamental Research Funds for the Central Universities(No.DUT20JC47)。
文摘Central air-conditioning systems predominantly operate under partial load conditions.The optimization of a differential pressure setpoint in the chilled water system of a central air-conditioning system leads to a more energy-efficient operation.Determining the differential pressure adjustment value based on the terminal user's real-time demand is one of the critical issues to be addressed during the optimal control process.Furthermore,the online application of the differential pressure setpoint optimization method needs to be considered,along with the stability of the system.This paper proposes a variable differential pressure reset method with an adaptive adjustment algorithm based on the Mamdani fuzzy model.The proposed method was compared with differential pressure reset methods with reference to the chilled water differential temperature,outdoor temperature,and linear model based on the adjustment algorithm.The energy-saving potential,temperature control effect,and avoidance of the most unfavorable thermodynamic loop effects of the four methods were investigated experimentally.The results indicated that,while satisfying the terminal user's energy supply demand and ensuring the avoidance of the most unfavorable thermodynamic loop,the proposed adaptive adjustment algorithm also decreased the differential pressure setpoint value by 25.1%—59.1%and achieved energy savings of 10.6%-45.0%.By monitoring the valve position and supply air temperature of each terminal user,the proposed method exhibited suitable online adaptability and could be flexibly applied to buildings with random load changes.
基金Project(50838009) supported by the National Natural Science Foundation of ChinaProjects(2006BAJ02A09,2006BAJ02A13-4) supported by the National Key Technologies R & D Program of China
文摘To explore the relationship between summer office set air-conditioning temperature and energy consumption related to air conditioning use to provide human thermal comfort,a comparison experiment was conducted in three similar offices at temperatures of 24,26 and 28 ℃ respectively. A thermal comfort questionnaire survey was conducted. It is demonstrated that air-conditioner energy consumption at the set temperature of 28 ℃ is 113% and 271% lower than at 26 ℃ and 24 ℃,respectively. A linear relationship exists between air-conditioner energy consumption and the indoor and outdoor temperature difference. When comfortably dressed,over 80% of research participants accept the set temperature of 28 ℃. The regression analysis leads to a neutral temperature of 26.2 ℃ and an acceptable temperature of 28.2 ℃ for over 80% of the research participants subjects,indicating that the current 26 ℃ set temperature for offices in summer,required by Chinese General Office of the State Council,can be increased to 28 ℃. Moreover,analysis of predicted mean vote(PMV) index shows that a set temperature of 27 ℃,not 26 ℃,is sufficiently comfortable for office staff wearing long-sleeve shirts,long pants and leather shoes.
基金Supported by Program of Science and Technology of Hunan Province(2007FJ2006)Project the Program of Science and Tech-nology of Hunan Province(2007TP4030)Hunan Provincial Natural Science Foundation of China(08JJ3093)
文摘This paper presented an entropy evaluation method for the influences of condense heat recovery system on the environment.Aiming at the damage of the condense heat to the environment,an entropy of resource loss and an emission entropy from the condense heat recovery system in the air conditioning refrigerating machine were introduced.For the evaluation of the entropies,we developed a new algorithm for the parameter identification,called the composite influence coefficient,based on the Least Squares Support Vector Machine method.By simulation,the numerical experiments shows that the Least Squares Support Vector Machine method is one of the powerful methods for the parameter identification to compute the damage entropy of the condense heat,with the largest training error being-0.025(the relative error being-3.56%),and the biggest test error being 0.015(the relative error being 2.5%).
文摘As the conceptual design of air-conditioning is done using the theory of Quality Function Deployment (QFD),cus- tomer requirements should be understood and the product competitive power be analyzed as exactly as possible for new product de- signing.Lots of information in the process of this research is fuzzy and uncertain,but traditional QFD can not deal with it well. Fuzzy theory can solve the problem.So a fuzzy model for analyzing product competitive power is formulated in this paper to im- prove traditional QFD,after that it is applied to analyze air-conditioning competitive power.When air-conditioning competitive power is analyzed using this model,firstly the importance weight of the customer requirements o fair-conditioning is determined us- ing the Analytic Hierarchy Process (AHP) weighting process,then air-conditloning competitive power is evaluated using fuzzy comprehensive evaluation.It is proved that the model is feasible and has good applicability.
基金This work was supported by the National Key Research and Development Program of China(No.2017YFB0903201)the Science and Technology Project of China Southern Power Grid(No.GDKJXM20172171).
文摘Solar energy powered organic Rankine cycle vapor compression cycle(ORC-VCC)is a good alternative to convert solar heat into a cooling effect.In this study,an ORC-VCC system driven by solar energy combined with electric motor is proposed to ensure smooth operation under the conditions that solar radiation is unstable and discontinuous,and an office building located in Guangzhou,China is selected as a case study.The results show that beam solar radiation and generation temperature have considerable effects on the system performance.There is an optimal generation temperature at which the system achieves optimum performance.Also,as a key indicator,the cooling power per square meter collector should be considered in the hybrid solar cooling system in design process.Compared to the vapor compression cooling system,the hybrid cooling system can save almost 68.23%of electricity consumption.
文摘Based on analysis of the reason and process of condensation on ceiling radiant cooling panels, two kinds of arrangement of detectors are put forward. The physical model is established, the results show that detectors are arranged as the form of triangle is more suitable. It can not only satisfy the use requirement but also it is economical and practical. Finally we can conclude that the inlet water temperature 0.5°C higher than dew point temperature is safe and reliable.