This research is intended to explore the capacity of Malaysia soil in becoming a more effective heat sink for the application of Earth-to-Air Heat Exchanger (EAHE) Cooling Technology in Malaysia. EAHE Cooling Technolo...This research is intended to explore the capacity of Malaysia soil in becoming a more effective heat sink for the application of Earth-to-Air Heat Exchanger (EAHE) Cooling Technology in Malaysia. EAHE Cooling Technology consists of buried pipes underground where the ambient air is channeled through from the pipe inlet and produces cooler air at its outlet. Within the buried pipes, heat exchange process occurs between the air and the soil that surrounding the pipe. This building cooling technology has been applied in many countries, mostly in temperate or hot and arid climate where the diurnal temperature is large. However, minimal resources were found on the study of EAHE application to buildings in Malaysia, hence there is room to develop. A parametric study on EAHE cooling application in Malaysia was done through field experiment and concluded that among many parameters affecting the technology performance, the soil temperature which surrounded the pipe was the most influential factor. The study recommended to further reduce the soil temperature to achieve a cooler outlet temperature. In response to that, this research conducted a parametric study of soil temperature under three different soil surface conditions: bare, shaded with timber pallettes and insulated with used tyres at 1.0 m and 1.5 m underground. The data was logged for a month and the result has shown significant reduction in the soil temperature underground below the shaded and insulated soil surface as compared to below bare soil surface condition. The insulated soil surface produced the best result where the soil temperature was reduced up to 26.9°C. The main contribution of this paper is to highlight that the soil surface treatment can be used to reduce solar heat gain within the soil underground and thus improving the performance of EAHE Cooling Technology particularly for the application in Malaysia tropical climate.展开更多
There are several ways to increase the efficiency of energy consumption and to decrease energy consumption. In this paper. the application of pinch technology in analysis of the heat exchangers network (HEN) in orde...There are several ways to increase the efficiency of energy consumption and to decrease energy consumption. In this paper. the application of pinch technology in analysis of the heat exchangers network (HEN) in order to reduce the energy consumption in a thermal system is studied. Therefore, in this grass root design, the optimum value of △Tmin, is obtained about 10℃and area efficiency (a) is 0.95. The author also depicted the grid diagram and driving force plot for additional analysis. In order to increase the amount of energy saving, heat transfer from above to below the pinch point in the diagnosis stage is verified for all options including re-sequencing, re-piping, add heat exchanger and splitting of the flows. Results show that this network has a low potential of retrofit to decrease the energy consumption, which pinch principles are planned to optimize energy consumption of the unit. Regarding the results of pinch analysis, it is suggested that in order to reduce the energy consumption, no alternative changes in the heat exchangers network of the unit is required. The acquired results show that the constancy of network is completely confirmed by the high area efficiency infirmity of the heat exchanger to pass the pinch point and from of deriving force plot.展开更多
An environmental force termed KELEA (kinetic energy limiting electrostatic attraction) is postulated to reduce the strength of intermolecular (hydrogen) bonding of water molecules, resulting in increased kinetic activ...An environmental force termed KELEA (kinetic energy limiting electrostatic attraction) is postulated to reduce the strength of intermolecular (hydrogen) bonding of water molecules, resulting in increased kinetic activity of the water. While regular water does not directly absorb KELEA from the environment, various dipolar compounds with separated electrical charges can seemingly act as a primary antenna for KELEA, with secondary transfer of energy into nearby water. Moreover, once sufficiently activated, the separated electrical charges in activated water can apparently function as a receiver for KELEA, leading to further activation of the water and also to the activation of added water. Prior publications have addressed the agricultural and potential clinical benefits of using KELEA activated water. This article is intended as the first in a series of papers describing useful industrial applications of KELEA activated water. The focus of the present paper is on the improved efficiency of industrial water heating and cooling systems by using KELEA activated water provided by pelleted, ground and heated volcanic rock as supplied by Kiko Technology.展开更多
The heat exchanger network(HEN)in a syngas-to-methanol process was designed and optimized based on pinch technology under stable operating conditions to balance the energy consumption and economic gain.In actual indus...The heat exchanger network(HEN)in a syngas-to-methanol process was designed and optimized based on pinch technology under stable operating conditions to balance the energy consumption and economic gain.In actual industrial processes,fluctuations in production inevitably affect the stable operation of HENs.A flexibility analysis of the HEN was carried out to minimize such disturbances using the downstream paths method.The results show that two-third of the downstream paths cannot meet flexibility requirements,indicating that the HEN does not have enough flexibility to accommodate the disturbances in actual production.A flexible HEN was then designed with the method of dividing and subsequent merging of streams,which led to 13.89%and 20.82%reductions in energy consumption and total cost,respectively.Owing to the sufficient area margin and additional alternative heat exchangers,the flexible HEN was able to resist interference and maintain production stability and safety,with the total cost increasing by just 4.08%.展开更多
Work exchange is a promising innovative technology in recovering residual pressure energy. However, at the systematic level, the comprehensive utilization of different energy resources in an energy system has become a...Work exchange is a promising innovative technology in recovering residual pressure energy. However, at the systematic level, the comprehensive utilization of different energy resources in an energy system has become an issue of concern. In this work, a systematic approach is proposed, one that successively integrates heat, work and adjusts operation parameters. A detailed procedure for building a heat-work coupling transfer network is provided. The synthesis mainly consists of constructing a work exchange sub-network with pinch analysis based on positive displacement type work exchangers. Simultaneously, another kind of sub-network based on turbine-type work exchangers is built as a schematic comparison. The influence of applying a positive displacement work exchanger on the system is investigated. Finally, as a case study, a renovation design of a typical rectisol process in the coal-water slurry gasification section of an ammonia plant is presented. The results show that the added work exchanger has little impact on the existing heat exchange sub-network. Moreover,extra pressure energy is recovered by coupling the transfer network. It is concluded that the heat-work systematic design is a promising and powerful method to use energy more efficiently.展开更多
To realize the industrialization of the novel single-column air separation process proposed in previous work,steady-state simulation for four different configurations of the single-column process with ternary(nitrogen...To realize the industrialization of the novel single-column air separation process proposed in previous work,steady-state simulation for four different configurations of the single-column process with ternary(nitrogen,oxygen and argon)is developed.Then,exergy analysis of the single-column processes is also carried out and compared with the conventional double-column air separation process at the same capacity.Furthermore,based on the steady-state simulation of single-column processes,the different heat exchanger networks(HENs)for the main heat exchanger and subcooler in each process are designed.To obtain better performance for this novel process,optimization of process configuration and operation is investigated.The optimal condition and configuration for this process is consisted as:feedstock is divided into two streams and the reflux nitrogen is compressed at the approximate temperature of 301 K.In addition,HEN is optimized to minimize the utilities.HENs without utilities are obtained for the four different configurations of single-column process.Furthermore,capital costs of the HEN for different cases are estimated and compared.展开更多
Frosting is an inevitable adverse phenomenon in many fields such as industrial refrigeration,cryo-genics,and heat pump air conditioning,which may influence the efficiency of the equipment and increase the energy consu...Frosting is an inevitable adverse phenomenon in many fields such as industrial refrigeration,cryo-genics,and heat pump air conditioning,which may influence the efficiency of the equipment and increase the energy consumption of the system.The complicated louvered-fin structure and fuid-channels arrangements of the microchannel heat exchanger(HEX)will affect the heat transfer performance and frosting characteristics.First,this article analyzes different factors such as refrigerant distribution,refrigerant fow pattern,and HEX surface temperature distribution.Further,combined with the features of the microchannel HEX,the existing anti-frosting technologies and various methods of surface treatment for anti-frosting are summarized.The review focuses on the preparation of superhydrophobic surfaces and their superior properties.Furthermore,the internal mechanism is analyzed in conjunction with the relevant research of our group.Superhydrophobic character has excellent anti-frosting performance and heat transfer performance,which is of great significance for improving energy-saving and system performance.Finally,the future development of superhydrophobic surface technology is analyzed and prospected.展开更多
The flow and heat transfer of air-cooled heat exchangers play important roles in the performance of indirect dry cooling systems in power plants,so it is of benefit to the design and operation of a typical indirect dr...The flow and heat transfer of air-cooled heat exchangers play important roles in the performance of indirect dry cooling systems in power plants,so it is of benefit to the design and operation of a typical indirect dry cooling system to optimize the thermo-flow characteristics of air-cooled heat exchangers.The entransy dissipation method is applied to the performance optimization of air-cooled heat exchangers in this paper.Two irreversible heat transfer processes in air-cooled heat exchangers,the heat transfer between circulating water and cooling air and the mixing of circulating water,are taken into account and analyzed by means of the entransy dissipation method.The total entransy dissipation rate,which connects the geometrical parameters of air-cooled heat exchanger sectors and the heat capacity rates of the fluids to the heat flow rate in every sector,is obtained.Based on the mathematical relation and the conditional extremum method,an optimization equation group is derived,by which the air-cooled heat exchanger with known air-side parameters is optimized,showing that the entransy dissipation based optimization approach can contribute to the distribution optimization of circulating water in air-cooled heat exchangers of a typical indirect dry cooling system.展开更多
本文采用夹点技术对某炼油厂常减压装置现有生产工况下的换热网络进行分析优化并提出改进方案。应用Aspen plus建立了常减压塔模型及相应的换热网络,计算各侧线流股流量和物性数据。利用Aspen Energy Analyzer计算得到该换热网络的夹点...本文采用夹点技术对某炼油厂常减压装置现有生产工况下的换热网络进行分析优化并提出改进方案。应用Aspen plus建立了常减压塔模型及相应的换热网络,计算各侧线流股流量和物性数据。利用Aspen Energy Analyzer计算得到该换热网络的夹点温度。通过夹点温度来分析诊断换热网络中跨越夹点物流,确定换热网络中瓶颈的位置。通过调整不合理配置的冷热流股换热器来优化换热网络,使脱盐原油进入常压塔的换热终温从288.0℃提高到310.4℃,优化后的冷、热公用工程用量各减少2808.0kW,显著降低了装置的操作费用。展开更多
The Self-adaptive control of the temperature can achieve the start of fuel cell at different operating temperatures, which is very important for the successful cold-start of the air-cooled PEMFC. The temperature distr...The Self-adaptive control of the temperature can achieve the start of fuel cell at different operating temperatures, which is very important for the successful cold-start of the air-cooled PEMFC. The temperature distribution characteristics during the cold-start process were analyzed based on adaptive temperature recognition control in this paper. Preheating model and cold-start model were established and the optimal balance between the hot air flow rate and the temperature required to promote a uniform temperature distribution in the stack was explored in the preheating stage. Finally, the non-equilibrium mass transfer, as well as the temperature rise in the catalyst layer and gas diffusion layer with different current densities, were analyzed in the start-up stage. The results indicate that the air-cooled PEMFC stack can be successfully started up at -40 ◦C within 10 min by means of external gas heating. The current density and air velocity have significant impacts on the temperature of aircooled PEMFC stack. Dynamic analysis of air-cooled PEMFCs and real-time monitoring are suitable for machine learning and self-adaptive control to set the operation parameters to achieve successful cold start. Optimize the matching of load current and cathode inlet speed to achieve thermal management in low temperature environment.展开更多
文摘This research is intended to explore the capacity of Malaysia soil in becoming a more effective heat sink for the application of Earth-to-Air Heat Exchanger (EAHE) Cooling Technology in Malaysia. EAHE Cooling Technology consists of buried pipes underground where the ambient air is channeled through from the pipe inlet and produces cooler air at its outlet. Within the buried pipes, heat exchange process occurs between the air and the soil that surrounding the pipe. This building cooling technology has been applied in many countries, mostly in temperate or hot and arid climate where the diurnal temperature is large. However, minimal resources were found on the study of EAHE application to buildings in Malaysia, hence there is room to develop. A parametric study on EAHE cooling application in Malaysia was done through field experiment and concluded that among many parameters affecting the technology performance, the soil temperature which surrounded the pipe was the most influential factor. The study recommended to further reduce the soil temperature to achieve a cooler outlet temperature. In response to that, this research conducted a parametric study of soil temperature under three different soil surface conditions: bare, shaded with timber pallettes and insulated with used tyres at 1.0 m and 1.5 m underground. The data was logged for a month and the result has shown significant reduction in the soil temperature underground below the shaded and insulated soil surface as compared to below bare soil surface condition. The insulated soil surface produced the best result where the soil temperature was reduced up to 26.9°C. The main contribution of this paper is to highlight that the soil surface treatment can be used to reduce solar heat gain within the soil underground and thus improving the performance of EAHE Cooling Technology particularly for the application in Malaysia tropical climate.
文摘There are several ways to increase the efficiency of energy consumption and to decrease energy consumption. In this paper. the application of pinch technology in analysis of the heat exchangers network (HEN) in order to reduce the energy consumption in a thermal system is studied. Therefore, in this grass root design, the optimum value of △Tmin, is obtained about 10℃and area efficiency (a) is 0.95. The author also depicted the grid diagram and driving force plot for additional analysis. In order to increase the amount of energy saving, heat transfer from above to below the pinch point in the diagnosis stage is verified for all options including re-sequencing, re-piping, add heat exchanger and splitting of the flows. Results show that this network has a low potential of retrofit to decrease the energy consumption, which pinch principles are planned to optimize energy consumption of the unit. Regarding the results of pinch analysis, it is suggested that in order to reduce the energy consumption, no alternative changes in the heat exchangers network of the unit is required. The acquired results show that the constancy of network is completely confirmed by the high area efficiency infirmity of the heat exchanger to pass the pinch point and from of deriving force plot.
文摘An environmental force termed KELEA (kinetic energy limiting electrostatic attraction) is postulated to reduce the strength of intermolecular (hydrogen) bonding of water molecules, resulting in increased kinetic activity of the water. While regular water does not directly absorb KELEA from the environment, various dipolar compounds with separated electrical charges can seemingly act as a primary antenna for KELEA, with secondary transfer of energy into nearby water. Moreover, once sufficiently activated, the separated electrical charges in activated water can apparently function as a receiver for KELEA, leading to further activation of the water and also to the activation of added water. Prior publications have addressed the agricultural and potential clinical benefits of using KELEA activated water. This article is intended as the first in a series of papers describing useful industrial applications of KELEA activated water. The focus of the present paper is on the improved efficiency of industrial water heating and cooling systems by using KELEA activated water provided by pelleted, ground and heated volcanic rock as supplied by Kiko Technology.
基金This work is financially supported by"the Fundamental Research Funds for the Central Universities"(2020XJHH01)the Yueqi Distinguished Scholar Project of China University of Mining and Technology(Beijing)(2020JCB02).
文摘The heat exchanger network(HEN)in a syngas-to-methanol process was designed and optimized based on pinch technology under stable operating conditions to balance the energy consumption and economic gain.In actual industrial processes,fluctuations in production inevitably affect the stable operation of HENs.A flexibility analysis of the HEN was carried out to minimize such disturbances using the downstream paths method.The results show that two-third of the downstream paths cannot meet flexibility requirements,indicating that the HEN does not have enough flexibility to accommodate the disturbances in actual production.A flexible HEN was then designed with the method of dividing and subsequent merging of streams,which led to 13.89%and 20.82%reductions in energy consumption and total cost,respectively.Owing to the sufficient area margin and additional alternative heat exchangers,the flexible HEN was able to resist interference and maintain production stability and safety,with the total cost increasing by just 4.08%.
基金supported by the National Natural Science Foundation of China (No. 20936004 and No. 21376187)
文摘Work exchange is a promising innovative technology in recovering residual pressure energy. However, at the systematic level, the comprehensive utilization of different energy resources in an energy system has become an issue of concern. In this work, a systematic approach is proposed, one that successively integrates heat, work and adjusts operation parameters. A detailed procedure for building a heat-work coupling transfer network is provided. The synthesis mainly consists of constructing a work exchange sub-network with pinch analysis based on positive displacement type work exchangers. Simultaneously, another kind of sub-network based on turbine-type work exchangers is built as a schematic comparison. The influence of applying a positive displacement work exchanger on the system is investigated. Finally, as a case study, a renovation design of a typical rectisol process in the coal-water slurry gasification section of an ammonia plant is presented. The results show that the added work exchanger has little impact on the existing heat exchange sub-network. Moreover,extra pressure energy is recovered by coupling the transfer network. It is concluded that the heat-work systematic design is a promising and powerful method to use energy more efficiently.
基金Supported by the National Natural Science Foundation of China(21576228)
文摘To realize the industrialization of the novel single-column air separation process proposed in previous work,steady-state simulation for four different configurations of the single-column process with ternary(nitrogen,oxygen and argon)is developed.Then,exergy analysis of the single-column processes is also carried out and compared with the conventional double-column air separation process at the same capacity.Furthermore,based on the steady-state simulation of single-column processes,the different heat exchanger networks(HENs)for the main heat exchanger and subcooler in each process are designed.To obtain better performance for this novel process,optimization of process configuration and operation is investigated.The optimal condition and configuration for this process is consisted as:feedstock is divided into two streams and the reflux nitrogen is compressed at the approximate temperature of 301 K.In addition,HEN is optimized to minimize the utilities.HENs without utilities are obtained for the four different configurations of single-column process.Furthermore,capital costs of the HEN for different cases are estimated and compared.
文摘Frosting is an inevitable adverse phenomenon in many fields such as industrial refrigeration,cryo-genics,and heat pump air conditioning,which may influence the efficiency of the equipment and increase the energy consumption of the system.The complicated louvered-fin structure and fuid-channels arrangements of the microchannel heat exchanger(HEX)will affect the heat transfer performance and frosting characteristics.First,this article analyzes different factors such as refrigerant distribution,refrigerant fow pattern,and HEX surface temperature distribution.Further,combined with the features of the microchannel HEX,the existing anti-frosting technologies and various methods of surface treatment for anti-frosting are summarized.The review focuses on the preparation of superhydrophobic surfaces and their superior properties.Furthermore,the internal mechanism is analyzed in conjunction with the relevant research of our group.Superhydrophobic character has excellent anti-frosting performance and heat transfer performance,which is of great significance for improving energy-saving and system performance.Finally,the future development of superhydrophobic surface technology is analyzed and prospected.
基金National Natural Science Foundation of China and Shenhua Group Corporation Limited(Grant No.U1261108)The Science and Technology Program of China Huaneng Group(Grant No.HNKJ13-H09)
文摘The flow and heat transfer of air-cooled heat exchangers play important roles in the performance of indirect dry cooling systems in power plants,so it is of benefit to the design and operation of a typical indirect dry cooling system to optimize the thermo-flow characteristics of air-cooled heat exchangers.The entransy dissipation method is applied to the performance optimization of air-cooled heat exchangers in this paper.Two irreversible heat transfer processes in air-cooled heat exchangers,the heat transfer between circulating water and cooling air and the mixing of circulating water,are taken into account and analyzed by means of the entransy dissipation method.The total entransy dissipation rate,which connects the geometrical parameters of air-cooled heat exchanger sectors and the heat capacity rates of the fluids to the heat flow rate in every sector,is obtained.Based on the mathematical relation and the conditional extremum method,an optimization equation group is derived,by which the air-cooled heat exchanger with known air-side parameters is optimized,showing that the entransy dissipation based optimization approach can contribute to the distribution optimization of circulating water in air-cooled heat exchangers of a typical indirect dry cooling system.
文摘本文采用夹点技术对某炼油厂常减压装置现有生产工况下的换热网络进行分析优化并提出改进方案。应用Aspen plus建立了常减压塔模型及相应的换热网络,计算各侧线流股流量和物性数据。利用Aspen Energy Analyzer计算得到该换热网络的夹点温度。通过夹点温度来分析诊断换热网络中跨越夹点物流,确定换热网络中瓶颈的位置。通过调整不合理配置的冷热流股换热器来优化换热网络,使脱盐原油进入常压塔的换热终温从288.0℃提高到310.4℃,优化后的冷、热公用工程用量各减少2808.0kW,显著降低了装置的操作费用。
基金supported by the National Key Research and Development Program of China(No.2020YFB1506300)the National Natural Science Foundation of China(No.51806071)+1 种基金the Natural Science Foundation of Hubei Province(No.2020CFA040)Wuhan Applied Foundational Frontier Project(No.2020010601012205).
文摘The Self-adaptive control of the temperature can achieve the start of fuel cell at different operating temperatures, which is very important for the successful cold-start of the air-cooled PEMFC. The temperature distribution characteristics during the cold-start process were analyzed based on adaptive temperature recognition control in this paper. Preheating model and cold-start model were established and the optimal balance between the hot air flow rate and the temperature required to promote a uniform temperature distribution in the stack was explored in the preheating stage. Finally, the non-equilibrium mass transfer, as well as the temperature rise in the catalyst layer and gas diffusion layer with different current densities, were analyzed in the start-up stage. The results indicate that the air-cooled PEMFC stack can be successfully started up at -40 ◦C within 10 min by means of external gas heating. The current density and air velocity have significant impacts on the temperature of aircooled PEMFC stack. Dynamic analysis of air-cooled PEMFCs and real-time monitoring are suitable for machine learning and self-adaptive control to set the operation parameters to achieve successful cold start. Optimize the matching of load current and cathode inlet speed to achieve thermal management in low temperature environment.