期刊文献+
共找到1,107篇文章
< 1 2 56 >
每页显示 20 50 100
Effect of Adhesive Type on the Quality of Coconut Shell Charcoal Briquettes Prepared by the Screw Extruder Machine
1
作者 Samsudin Anis Deni Fajar Fitriyana +7 位作者 Aldias Bahatmaka Muhammad Choirul Anwar Arsyad Zanadin Ramadhan Fajar Chairul Anam Raffanel Adi Permana Ahmad Jazilussurur Hakim Natalino Fonseca Da Silva Guterres Mateus De Sousa Da Silva 《Journal of Renewable Materials》 EI CAS 2024年第2期381-396,共16页
Indonesia is one of the largest coconut-producing countries in the world.The utilization of coconut shell waste into briquettes will increase the selling value and become a great export opportunity.However,the effect ... Indonesia is one of the largest coconut-producing countries in the world.The utilization of coconut shell waste into briquettes will increase the selling value and become a great export opportunity.However,the effect of adhesives on the quality of coconut shell charcoal briquettes made using screw extruder machine has not been widely studied.This study aims to determine the effect of adhesive type on the quality of coconut shell charcoal briquettes.The process of fabricating briquettes in this study included crushing,mixing,blending,pressing,and drying.In the mixing process,3 types of adhesives were used,namely tapioca flour(Briquette_1),cassava flour(Briquette_2),and modified cassava flour(Briquette_3)with a concentration of 5%of the weight of coconut shell charcoal powders.The quality of the resulting briquettes and commercial briquettes will be evaluated by moisture content,ash content,volatile matter,fixed carbon,calorific value,density,compressive,and drop test testing.The results of this research showed that the type of adhesive had a significant effect on the quality of the briquettes produced.Specimen Briquette_1 had better quality than commercial briquettes(Briquette_4)and other briquette specimens.The test results showed that Briquette_1 produced briquettes with better compressive strength and friability than the other specimens,at 6.95 N/mm^(2) and 4.44%,respectively.The moisture content,ash content,fixed carbon,and calorific value of Briquette_1 have met the requirements set by the Indonesian National Standard(SNI)number 01-6235-2000.Meanwhile,the volatile matter content and density of Briquette_1 are by the standards of Japan and the United States America(USA). 展开更多
关键词 COCONUT charcoal briquetteS ADHESIVE MIXING BLENDING PRESSING
下载PDF
Life Cycle Assessment of Cashew Nutshell Briquettes Produced in Côte d’Ivoire
2
作者 Bi Tra Désiré Zinla Ekoun Paul Magloire Koffi +2 位作者 Kamenan Blaise Koua Kpeusseu Angeline Kouambla Epse Yeo Prosper Gbaha 《Open Journal of Applied Sciences》 2024年第9期2411-2430,共20页
Now one of the main cash crops in Côte d’Ivoire, the cashew tree feeds an entire industrial sector based on the processing of its fruit. This processing generates a large volume of waste, consisting of cashew nu... Now one of the main cash crops in Côte d’Ivoire, the cashew tree feeds an entire industrial sector based on the processing of its fruit. This processing generates a large volume of waste, consisting of cashew nutshells, the management of which poses environmental problems. With the aim of replacing charcoal and firewood with more environmentally friendly fuels, several studies are currently being carried out into the optimal use of cashew shells in fuel briquettes. To assess the environmental sustainability of these briquettes, this study calculates the environmental impacts associated with their life cycle, compares them with those of charcoal and firewood, and identifies the processes that contribute most to environmental pollution, with a view to improving them. Analysis of the results showed that cashew nutshell briquettes emit a range of pollutants over their life cycle that damage the environment and are responsible for the 7 impact categories considered: acidification, eutrophication, freshwater aquatic ecotoxicity, global warming, human toxicity, photochemical oxidation and terrestrial ecotoxicity potential. However, they are more environmentally friendly than charcoal and firewood for 5 impact categories: freshwater aquatic ecotoxicity, global warming, human toxicity, photochemical oxidation and terrestrial ecotoxicity potential. The 3 elementary processes, i.e. transport of biomass raw materials, production, and combustion of briquettes, emit pollutants that contribute most to the creation of environmental impact categories. The most relevant pollutants are nitrogen oxides (NOx), sulphur oxides (SOx) and particulate matter (PM). 展开更多
关键词 LCA briquetteS Cashew Nutshell BIOMASS Environmental Impact
下载PDF
Reduction process and zinc removal from composite briquettes composed of dust and sludge from a steel enterprise 被引量:14
3
作者 Lei-ge Xia Rui Mao +3 位作者 Jian-liang Zhang Xiang-nan Xu Meng-fang Wei Fei-hua Yang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2015年第2期122-131,共10页
In this study, composite briquettes were prepared using gravity dust and converter sludge as the main materials; these briquettes were subsequently reduced in a tube furnace at 1000-1300℃ for 5-30 min under a nitroge... In this study, composite briquettes were prepared using gravity dust and converter sludge as the main materials; these briquettes were subsequently reduced in a tube furnace at 1000-1300℃ for 5-30 min under a nitrogen atmosphere. The effects of reaction temperature, reaction time, and carbon content on the metallization and dezincification ratios of the composite briquettes were studied. The reduced com- posite briquettes were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive spectroscopy (EDS). The results show that the gravity dust and converter sludge are combined into the composite briquettes and a reasonable combination not only improves the performance of the composite briquettes, but also leads to the reduction with no or little reductant and flux. As the re- action temperature is increased and the reaction time is extended, the metallization and dezincification ratios of the composite briquettes in- crease gradually. When the composite briquettes are roasted at 1300℃ for 30 rain, the metallization ratio and dezineification ratio reaches 91.35% and 99.25%, respectively, indicating that most of the iron oxide is reduced and the zinc is almost completely removed. The carbon content is observed to exert a lesser effect on the reduction process; as the C/O molar ratio increases, the metallization and dezincification ra- tios first increase and then decrease. 展开更多
关键词 solid waste recycling DUST SLUDGE composite briquettes REDUCTION removal of zinc
下载PDF
Using HyperCoal to prepare metallurgical coal briquettes via hot-pressing 被引量:6
4
作者 Ya-jie Wang Hai-bin Zuo +1 位作者 Jun Zhao Wan-long Zhang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2019年第5期547-554,共8页
HyperCoal was prepared from low-rank coal via high-temperature solvent extraction with N-methylpyrrolidone as an extraction solvent and a liquid-to-solid ratio of 50 mL/g in a high-temperature and high-pressure reacto... HyperCoal was prepared from low-rank coal via high-temperature solvent extraction with N-methylpyrrolidone as an extraction solvent and a liquid-to-solid ratio of 50 mL/g in a high-temperature and high-pressure reactor. When HyperCoal was used as a binder and pulverized coal was used as the raw material, the compressive strength of the hot-pressed briquettes(each with a diameter of 20 mm and mass of 5 g) under different conditions was studied using a hot-pressing mold and a high-temperature furnace. The compressive strength of the hot-pressed briquettes was substantially improved and reached 436 N when the holding time period was 15 min, the hot-pressing temperature was 673 K, and the HyperCoal content, was 15 wt%. Changes in the carbonaceous structure, as reflected by the intensity ratio between the Raman G-and D-bands(IG/ID), strongly affected the compressive strength of hot-pressed briquettes prepared at different hot-pressing temperatures. Compared with cold-pressed briquettes, hot-pressed briquettes have many advantages, including high compressive strength, low ash content, high moisture resistance, and good thermal stability; thus, we expect that hot-pressed briquettes will have broad application prospects. 展开更多
关键词 HyperCoal COAL briquette COMPRESSIVE strength BINDER HOT-PRESSING
下载PDF
The Influence of Atmospheric Pressure on Air Content and Pore Structure of Air-entrained Concrete 被引量:15
5
作者 LI Yang WANG Zhendi WANG Ling 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2019年第6期1365-1370,共6页
To study the effect of atmospheric pressure on the properties of fresh and hardened airentrained concrete, three kinds of air entraining agents were used for preparing air-entrained concrete in the plateaus(Lhasa, 61 ... To study the effect of atmospheric pressure on the properties of fresh and hardened airentrained concrete, three kinds of air entraining agents were used for preparing air-entrained concrete in the plateaus(Lhasa, 61 kPa) and the plains(Beijing, 101 kPa). Air content, slump, compressive strength and pore structure of the three air-entrained concretes were tested in these two places. It is found that the air content of concrete under low atmospheric pressure(LAP) is 4%-36% lower than that of concrete under normal atmospheric pressure(NAP), which explaines the decrease of slump for air-entrained concrete under LAP. Pore number of hardened concrete under LAP is reduced by 48%-69%. While, the proportion of big pores(pore diameter >1 200 μm) and air void spacing factor are increased by 1.5%-7.3% and 51%-92%, respectively. The deterioration of pore structure results in a 3%-9% reduction in the compressive strength of concrete. From the results we have obtained, it can be concluded that the increase of critical nucleation energy of air bubbles and the decrease of volumetric compressibility coefficient of air in the concrete are responsible for the variation of air content and pore structure of concrete under LAP. 展开更多
关键词 low atmospheric pressure air-entrained concrete air content pore structure surface tension
下载PDF
BEHAVIOR OF AIR-ENTRAINED CONCRETE AFTER FREEZE-THAW CYCLES 被引量:11
6
作者 Huaishuai Shang Yupu Song Jinping Ou 《Acta Mechanica Solida Sinica》 SCIE EI 2009年第3期261-266,共6页
The experimental study of air-entrained concrete specimens subjected to different cycles of freeze-thaw was completed. The dynamic modulus of elasticity, weight loss, the cubic compressive strength, compressive streng... The experimental study of air-entrained concrete specimens subjected to different cycles of freeze-thaw was completed. The dynamic modulus of elasticity, weight loss, the cubic compressive strength, compressive strength, tensile strength and cleavage strength of air-entrained concrete were measured after 0, 100, 200, 300, 400 cycles of freeze-thaw. The experimental results showed that the dynamic modulus of elasticity and strength decreased as the freeze-thaw was repeated. The influences of freeze-thaw cycles on the mechanical properties, the dynamic modulus of elasticity and weight loss were analyzed according to the experimental results. It can serve as a reference for the maintenance, design and the life prediction of dams, hydraulic structures, offshore structures, concrete roads and bridges in northern cold regions. 展开更多
关键词 air-entrained concrete freeze-thaw cycles mechanical properties the dynamic mod-ulus of elasticity weight loss
下载PDF
Ignition and Emission Characteristics of Ignition-assisting Agents for Densified Corn Stover Briquette Fuel 被引量:4
7
作者 袁海荣 庞云芝 +4 位作者 王奎升 刘研萍 左晓宇 马淑勍 李秀金 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2010年第4期687-694,共8页
Ignition-assisting agents for densified corn stover briquette fuel(DCBF) were developed,and their ignition and emission characteristics were investigated using type LLA-6 household cooking stove.Three waste liquid fue... Ignition-assisting agents for densified corn stover briquette fuel(DCBF) were developed,and their ignition and emission characteristics were investigated using type LLA-6 household cooking stove.Three waste liquid fuels,waste engine oil(E) ,diesel oil(D) ,and industrial alcohol(A) ,were used as raw materials to make 25 ignitionassisting agents by mixing at different ratios.Their ignition performance was evaluated in terms of ignition time and cost.It was found that ignition-assisting agents ED15(a mix of E and D at volume ratio of 1︰5) and DA51(a mix of D and A at volume ratio of 5︰1) presented better ignition results with shorter ignition time(40-53 s) and lower cost(6.1 and 5.3 cents) at the dosages of 9 ml and 8 ml,respectively.The emission of O2,CO,CO2,NOx,and SO2,the temperature in fume gas,and combustion efficiency were investigated for ED15 and DA51.The results show that the emission of ED15 with the dosage of 9 ml is lower than that of DA51 with the dosage of 8 ml in the ignition process.ED15 at the dosage of 9 ml achieves satisfactory combustion efficiency and emits less pollutant,so it is recommended for practical application.The study will provide a cost-effective and environmentally friendly approach to fast ignite DCBF and break the barrier to the practical application of DCBF. 展开更多
关键词 ignition-assisting agent densified corn stover briquette fuel fume gas EMISSION
下载PDF
Study on the comparison of the pyrolysis gas release of lignite and its briquette 被引量:3
8
作者 ZHU Shi-feng CHU Mo ZHAO Fei-xiang 《Journal of Coal Science & Engineering(China)》 2012年第2期177-181,共5页
In this experiment, lignite was refined and processed through binderless briquette preparation process from low-rank coal and became briquette. Then, lignite and its briquette were pyrolysed as materials to compare th... In this experiment, lignite was refined and processed through binderless briquette preparation process from low-rank coal and became briquette. Then, lignite and its briquette were pyrolysed as materials to compare the nature of their pyrolysis. In this study, the experiment was carried out through a lab tube furnace, at a heating rate of 10 ~C/min, and the gas was analyzed and compared, which was collected at different temperatures. The results show that: in the pyrolysis temperature of 550-850 ℃, the semi-coke yield of briquette is 2%-6% higher than lignite, the tar yield of briquette is 2%-3% higher than lignite and the gas yield of briquette is 4%-9% less than lignite. The time required for complete release of the briquette is about 20 min less than lignite. The components in the pyrolysis gas of lignite and its briquette are the same, and their variation with the pyrolysis temperature is similar. 展开更多
关键词 pyrolysis gas LIGNITE briquette
下载PDF
Characterization of bio-coal briquettes blended from low quality coal and biomass waste treated by Garant■bio-activator and its application for fuel combustion 被引量:1
9
作者 Anggoro Tri Mursito Widodo Danang Nor Arifin 《International Journal of Coal Science & Technology》 EI CAS 2020年第4期796-806,共11页
Experimental research was carried out on the manufacturing of bio-coal briquettes from a blend of two different types of low-quality coal and biomass waste in the absence of coal carbonization,where the third blend of... Experimental research was carried out on the manufacturing of bio-coal briquettes from a blend of two different types of low-quality coal and biomass waste in the absence of coal carbonization,where the third blend of the material was fermented by adding a bio-activator solution before pressurizing the components into briquettes.The coal samples from Caringin-Garut Regency(BB-Garut)had a low calorific value and a high sulfur content(6.57 wt%),whereas the coal samples from Bayah-Lebak Regency(BB-Bayah)had a higher calorific value and a lower sulfur content(0.51 wt%).The biomass added to the coal blend is in the form of fermented cow dung(Bio-Kohe),and it had a calorific value of 4192 kcal/kg and a total sulfur content of 1.56 wt%.The main objective of this study is to determine the total decrease in the sulfur content in a blend of coal and biomass in which a fennentation process was carried out using a bio-activator for 24 h.The used bio-activator was made from Garant■(1:40)+molasses 1 wt%/vol,and its used amount was 0.2 L/kg.Also,the total sulfur content in the blend was 1.00 wt%-1.14 wt%,which fulfills the necessary quality requirements for non-carbonized bio-coal briquettes.The pyritic and sulfate content in the raw coal was dominant,and the organic sulfur,when fermented with Garant■,was found to be less in the produced bio-coal briquettes by 38%-58%. 展开更多
关键词 Coal blending Biomass waste FERMENTATION briquettes material Combustion properties
下载PDF
Physical and combustion properties of briquettes from sawdust of Azadirachta indica 被引量:1
10
作者 O.A.Sotannde A.O.Oluyege G.B.Abah 《Journal of Forestry Research》 SCIE CAS CSCD 2010年第1期63-67,I0003,共6页
The study was undertaken to investigate the properties of cassava starch and gum arabic bonded briquettes from the sawdust of Azadirachta indica. The briquettes were produced using a Jack press at an average pressure ... The study was undertaken to investigate the properties of cassava starch and gum arabic bonded briquettes from the sawdust of Azadirachta indica. The briquettes were produced using a Jack press at an average pressure of 10.7 kg.cm^-2. The sawdust and binders were mixed at ratios of 100:15, 100:25, 100:35 and 100:45 in weight, respec tively. The briquettes produced were subjected to physical and combustion tests. Both the physical and combustion properties of the briquettes vary with binder types and binder levels (p 〈 0.05). The result shows that briquettes bonded with starch gave better performance based on density of 0.546 g.cm^-3, durability rating of 95.93%, heating value of 33.09 MJ.kg^-1, percentage of fixed carbon of 84.70% and low ash and volatile matter of 3.35% and 11.95%, respectively, while briquette bonded with gum arabic has density of 0.425 g.cm^-3, durability rating of 94.85%, heating value of 32.76 MJ.kg^-l, percentage of fixed carbon of 87.30% and low ash and volatile matter of 4.45% and 8.75, respectively. Since the aim of briquetting is to produce briquette that will serve as a good source of fuel and support combustion, the best briquette was produced when the sawdust-starch ratio and sawdust-gum arabic ratio was 100:25 and 100:35, respectively. 展开更多
关键词 Azadirachta indica briquette binder level durability rating combustion properties
下载PDF
Physical and mechanical characteristics of composite briquette from coal and pretreated wood fines 被引量:1
11
作者 Adekunle Adeleke Jamiu Odusote +3 位作者 Peter Ikubanni Olumuyiwa Lasode Madhurai Malathi Dayanand Pasawan 《International Journal of Coal Science & Technology》 EI CAS CSCD 2021年第5期1088-1098,共11页
Melina wood torrefied at 260℃ for 60 min was agglomerated with lean grade coal fines into composite briquettes using pitch as binder.Torrefied biomass(3%-20%)and coal fines(80%-97%)were blended together to produce th... Melina wood torrefied at 260℃ for 60 min was agglomerated with lean grade coal fines into composite briquettes using pitch as binder.Torrefied biomass(3%-20%)and coal fines(80%-97%)were blended together to produce the composite briquettes under a hydraulic press(28 MPa).The briquettes were cured at 300℃.Density,water resistance,drop to fracture,impact resistance,and cold crushing strength were evaluated for the composite briquettes.The proximate,ultimate,and calorific value analyses were carried out according to different ASTM standards.Microstructural studies were carried out using scanning electron microscope and electron probe microanalyzer equipped with energy dispersive x-ray.Fourier Transform Infrared Spectrophotometer(FTIR)was used to obtain the functional groups in the raw materials and briquettes.The density of the composite briquettes ranged from 0.92 to 1.31 g/cm^(3) after curing.Briquettes with<10%torrefied biomass has good water resistance index(>95%).The highest cold crushing strength of 4 MPa was obtained for briquettes produced from 97%coal fines and 3%torrefied biomass.The highest drop to fracture(54 times/2 m)and impact resistance index(1350)were obtained for the sample produced from 97%coal and 3%torrefied biomass.The fixed and elemental carbons of the briquettes showed a mild improvement compared to the raw coal.The peaks from FTIR spectra for the briquettes shows the presence of aromatic C=C bonds and phenolic OH group.The composite briquettes with up to 20%torrefied biomass can all be useful as fuel for various applications. 展开更多
关键词 Composite briquettes Lean grade coal Torrefied biomass Physico-mechanical properties Combustion properties
下载PDF
Evaluation of Fuel Properties of Six Tropical Hardwood Timber Species for Briquettes 被引量:1
12
作者 Stephen J. Mitchual Kwasi Frimpong-Mensah Nicholas A. Darkwa 《Journal of Sustainable Bioenergy Systems》 2014年第1期1-9,共9页
The fuel potential of six tropical hardwood species namely: Triplochiton scleroxylon, Ceiba pentandra, Aningeria robusta, Terminalia superba, Celtis mildbreadii and Piptadenia africana were studied. Properties studied... The fuel potential of six tropical hardwood species namely: Triplochiton scleroxylon, Ceiba pentandra, Aningeria robusta, Terminalia superba, Celtis mildbreadii and Piptadenia africana were studied. Properties studied included species density, gross calorific value, volatile matter, ash content, organic carbon and elemental composition. Fuel properties were determined using standard laboratory methods. The result indicates that the gross calorific value (GCV) of the species ranged from 20.16 to 22.22 MJ/kg and they slightly varied from each other. Additionally, the GCV of the biomass materials were higher than that of other biomass materials like;wheat straw, rice straw, maize straw and sugar cane. The ash and volatile matter content varied from 0.6075 to 5.0407%, and 75.23% to 83.70% respectively. The overall rating of the properties of the six biomass materials suggested that Piptadenia africana has the best fuel property to be used as briquettes and Aningeria robusta the worse. This study therefore suggests that a holistic assessment of a biomass material needs to be done before selecting it for fuel purpose. 展开更多
关键词 ASH Content briquette Calorific Value ELEMENTAL Composition Species VOLATILE Matter
下载PDF
Relationship between Physico-Mechanical Properties, Compacting Pressure and Mixing Proportion of Briquettes Produced from Maize Cobs and Sawdust 被引量:1
13
作者 Stephen J. Mitchual Kwasi Frimpong-Mensah Nicholas A. Darkwa 《Journal of Sustainable Bioenergy Systems》 2014年第1期50-60,共11页
This study examined the relationship between selected physico-mechanical properties, compacting pressure and mixing proportion of briquettes produced from combination of maize cob particles and sawdust of low, medium ... This study examined the relationship between selected physico-mechanical properties, compacting pressure and mixing proportion of briquettes produced from combination of maize cob particles and sawdust of low, medium and high density timber species. Particle sizes of maize cobs and sawdust used for the study were ≤1 mm. The two materials were combined at mixing percentages of 90:10, 70:30 and 50:50 (Sawdust:maize cobs). Briquettes were produced at room temperature (28°C) using compacting pressures 20, 30, 40 and 50 MPa. The results suggested that combining maize cob particles with sawdust of low, medium and high density wood species could significantly enhance the relaxed density, compressive strength in cleft and impact resistance index of briquettes produced from agricultural biomass residue like maize cobs. The results further indicated that the physical and mechanical characteristics of briquettes produced from combinations of sawdust of low density species and maize cobs were exceptionally higher than that produced from combinations of maize cob particles, and medium density and high density timber species. The R2 values for the regression model between the independent variables (mixing percentage and compacting pressure) and relaxed density, compressive strength in cleft and impact resistance index of briquettes produced from combinations of maize cob particles and sawdust of low density species (Ceiba pentandra) were 0.966, 0.932 and 0.710 respectively. This study provides a hope for briquetting maize cobs at room temperature using a low compacting pressure. 展开更多
关键词 briquette COMPACTING PRESSURE MAIZE Cobs Mixing Proportions Physico-Mechanical Properties SAWDUST
下载PDF
Production of Fuel Briquettes from Bamboo and Agricultural Residue as an Alternative to Charcoal 被引量:1
14
作者 Patrick Mulindwa Dan Egesa +1 位作者 Anthony Osinde Esther Nyanzi 《Journal of Sustainable Bioenergy Systems》 2021年第3期105-117,共13页
The study was done to explore the potential of producing fuel briquettes that could meet the need for energy in Uganda, especially Kampala city. The primary objective of this work was to produce fuel briquettes from&l... The study was done to explore the potential of producing fuel briquettes that could meet the need for energy in Uganda, especially Kampala city. The primary objective of this work was to produce fuel briquettes from</span><span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">homogene</span><span style="font-family:Verdana;">ous and heterogeneous combination</span><span style="font-family:Verdana;"><span style="font-family:Verdana;">s</span></span><span style="font-family:Verdana;"> of carbonized maize cobs, Bamboo</span><span style="font-family:Verdana;"> poles and charcoal dust. For the primary objective to be achieved, the main activities which were performed included;chopping bamboo poles, sorting maize cobs, carbonization, crushing, binder preparation, mixing, extrusion, drying and quality assessment of the fuel briquettes. The maize cobs and charcoal dust used for this work were purchased from the farmers and charcoal sellers respectively from </span><span style="font-family:Verdana;"><span style="font-family:Verdana;">the </span></span><span style="font-family:Verdana;">districts of Luwero and Nakaseke. Bamboo poles were provided by Divine bamboo group. The homogenous combinations included 100% maize cob char, 100% bamboo char and 100% charcoal dust. Heterogeneous combinations included 75% bamboo char + 25% charcoal dust and 25% bamboo char + 75% charcoal dust. The test results for both homogenous and heterogeneous combinations of fuel briquettes had ranges of moisture content 8%</span><span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">-</span><span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">11%, Volatile matter 12%</span><span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">-</span><span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">23%, Ash content 33%</span><span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">-</span><span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">39%, Heating Value 16</span><span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">-</span><span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">22 MJ/Kg, Fixed Carbon 30%</span><span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">-</span><span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">51% and moisture content 8%</span><span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">-</span><span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">9%, Volatile matter 13%</span><span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">-</span><span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">19%, Ash content 27%</span><span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">-</span><span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">44%, Heating Value 16</span><span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">-</span><span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">18 MJ/Kg, Fixed Carbon 30%</span><span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">-</span><span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">51% respectively. The test results for drop re</span><span style="font-family:Verdana;">sistance, density and Compressibility strength for both homogeneous and</span><span style="font-family:Verdana;"> heterogeneous combinations had ranges of 7%</span><span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">-</span><span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">56%, 214</span><span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">-</span><span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">941 kg/m</span><sup><span style="font-family:Verdana;vertical-align:super;">3</span></sup><span style="font-family:Verdana;">, 0.077</span><span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">-</span><span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">0.544 N/mm</span><sup><span style="font-family:Verdana;vertical-align:super;">2</span></sup><span style="font-family:Verdana;"> and 12%</span><span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">-</span><span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">28%, 869.1</span><span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">-</span><span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">958.3 kg/m</span><sup><span style="font-family:Verdana;vertical-align:super;">3</span></sup><span style="font-family:Verdana;">, 0.124</span><span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">-</span><span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">0.295</span><span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">N/mm</span><sup><span style="font-family:Verdana;vertical-align:super;">2</span></sup><span style="font-family:Verdana;"> respectively. These results were within the ranges reported in </span><span style="font-family:Verdana;"><span style="font-family:Verdana;">the </span></span><span style="font-family:Verdana;">literature especially for the heterogeneous combinations. Therefore, there is the possibility to use bamboo woody feedstock in combination with other agricultural waste feedstock for </span><span style="font-family:Verdana;"><span style="font-family:Verdana;">the </span></span><span style="font-family:Verdana;">production of fuel briquettes. We can in</span><span style="font-family:Verdana;">crease the quality and production of fuel briquettes by using alternative </span><span style="font-family:Verdana;">feedstock sources rather than degrading the environment through deforestation. 展开更多
关键词 BIOENERGY Solid Biofuels briquette Quality
下载PDF
FABRICATION AND INDUSTRIAL APPLICATION OF FERROMANGANESE COMPOSITE BRIQUETTE
15
作者 Yang Huaming Qiu Guanzhou(Department of Mineral Engineering,Central South University of Technology, Changsha 410083,China) 《Journal of Central South University》 SCIE EI CAS 1998年第1期8-11,共4页
Organic binder is used for briquetting manganese ore and coke fines to fabricate composite briquette with high strength and resistivity, thermal stability, good softening property and reducibility through simple proce... Organic binder is used for briquetting manganese ore and coke fines to fabricate composite briquette with high strength and resistivity, thermal stability, good softening property and reducibility through simple process ,which is advantageous to deep insertion of electrodes,improvement of permeability in burden layer and stabilization of operating process during smelting.Significant effects have been obtained from the industrial application in an 1800 kVA ferromanganese arc furnace charged with 50% of composite briquette: 20% electricity was saved and 9.6% more manganese was recovered. 展开更多
关键词 COMPOSITE briquette FERROMANGANESE ARC FURNACE
下载PDF
Mechanism of sulfur capture during coal briquette combustion
16
作者 Lu Xin, Lin Guo zhen, Zhuang Ya hui Research Center for Eco Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 1998年第4期69-74,共6页
The mechanisms of sulfur capturing during coal briquette combustion was discussed. Various factors affecting sulfur removal efficiency have been studied. Characterization of the slag left after combustion has been ca... The mechanisms of sulfur capturing during coal briquette combustion was discussed. Various factors affecting sulfur removal efficiency have been studied. Characterization of the slag left after combustion has been carried out by using X ray diffraction (XRD), Messbauer spectroscopy (MS), scanning electron microscopy (SEM), energy dispersion X ray analysis (EDAX), and electron spectroscopy for chemical analysis (ESCA). No other sulfur containing species besides CaSO 4 was found. Small amount of CaFe 3(SiO 4) 2OH, some complexes of CaO SiO 2 Fe 2O 3 and vitreous iron oxides were identified on the surface of CaSO 4 grains. This might explain the mechanism of sulfur fixation during coal briquettes combustion. 展开更多
关键词 coal briquette sulfur capture high temperature combustion.
下载PDF
Emission control for precursors causing acid rain(V): Improvement of acid soil with the bio-briquette combustion ash 被引量:1
17
作者 DONGXu-hui SAKAMOTOKazuhiko +2 位作者 WANGWei GAOShi-dong ISOBEYugo 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2004年第5期705-711,共7页
The bio-briquette technique which mixes coal, biomass and sulfur fixation agent and bio-briquettes under 3—5 t/cm 2 line pressure has aroused people's attention in view of controlling the air pollution and the ... The bio-briquette technique which mixes coal, biomass and sulfur fixation agent and bio-briquettes under 3—5 t/cm 2 line pressure has aroused people's attention in view of controlling the air pollution and the acid rain. In this paper, the physicochemical properties of bio-briquette and its ash were investigated. And the acid soil was improved by the bio-briquette combustion ash, which contained nutritive substances such as P, N, K and had the acid-neutralizing capacity(ANC). The pH, EC, effective nutrient elements(Ca, Mg, K, P and N), heavy metal elements(Al, Cu, Cd, Cr, Zn and Mn) and acid-neutralizing capacity change of ash-added soils within the range of 0—10%, were also studied. Specially, when 5% bio-briquette combustion ash was added to the tested soil, the content of the effective elements such as Ca, Mg and K rose by 100 times, 7 times and twice, respectively. The total nitrogen also increased by about twice. The results showed the oxyanions such as that of Al, Cu, Cd, Cr, Zn and Mn were not potentially dangerous, because they were about the same as the averages of them in Chinese soil. It is shown that the ANC became stronger, though the ANC hardly increases in the ash-added soil. On the basis of the evaluation indices, it is concluded that the best mixture ratio is to add 2.5%—8% of the bio-briquette combustion ash to the tested soil. 展开更多
关键词 bio-briquette combustion ash soil improvement ANC heavy metal element nutrient element
下载PDF
Application of carbon composite iron ore hot briquette to innovative ironmaking process
18
作者 CHU Mansheng Institute of Ferrous Metallurgy,Northeastern University,Shenyang 110004,Liaoning,China 《Baosteel Technical Research》 CAS 2010年第S1期2-,共1页
As a new type of ironmaking raw materials,carbon composite iron ore hot briquette(CCB) is the product of fine iron ore and fine coal by hot briquetting process.On basis of experimental research on the manufacturing an... As a new type of ironmaking raw materials,carbon composite iron ore hot briquette(CCB) is the product of fine iron ore and fine coal by hot briquetting process.On basis of experimental research on the manufacturing and metallurgical properties of CCB,this study focused on the application of CCB to blast furnace ironmaking and newly-developed shaft furnace smelting reduction processes.Firstly,the metallurgical properties of CCB are experimentally tested and compared with the common iron-bearing burdens.Then,the effects of charging CCB on blast furnace operation are numerically analyzed by means of multi-fluid blast furnace model,and the flowchart and pilot test of CCB-Shaft furnace smelting reduction process are briefly introduced. 展开更多
关键词 carbon composite iron ore hot briquette IRONMAKING blast furnace smelt reduction process
下载PDF
Energy Efficiency of Briquettes Derived from Three Agricultural Waste’s Charcoal Using Two Organic Binders
19
作者 Pali Kpelou Damgou Mani Kongnine +2 位作者 Saboillié Kombate Essowè Mouzou Kossi Napo 《Journal of Sustainable Bioenergy Systems》 2019年第2期79-89,共11页
Waste management could contribute significantly to reducing environmental degradation. Studies showed that briquetting provides with or without binder helps to manage wastes as energy fuels. However, the properties of... Waste management could contribute significantly to reducing environmental degradation. Studies showed that briquetting provides with or without binder helps to manage wastes as energy fuels. However, the properties of many binders are not investigated extensively. This work investigated the effect of two organic binders’ low rate on energy efficiency of Briquettes produced from charcoals of Tender Coconut Husks (TCH), Palm Kernel Shells (PKS) and Corn Cobs (CC). Bombax Costatum calyx (B) and Cissus Repens barks (C) were used separately as binders to elaborate briquettes. The briquettes were compared based on their energy efficiency parameters with wood charcoal as control. Energy efficiency parameters such as water boiling time (WBT), mass of biomass used (MB), burning rate (BR), temperature rise rate (TR) and maximum temperature in the furnace (Tmax) were measured from each biomass charcoal briquette and wood charcoal combustion. Water boiling test was applied to determine briquettes thermal properties. The results of WBT, BR, TR and Tmax were respectively within the ranges 3.4 - 12.3 min, 2.90 - 7.71 g/min, 4.63°C/s - 16.10°C/s and 623°C - 900°C. Corn Cobs charcoal briquettes with Bombax binder took the shortest time to boil water and also presented a high temperature rise rate and the highest maximum temperature. The lowest burning rates were obtained for Tender coconut husks charcoal briquettes with Cissus binder. They showed good material conservation for bombax bound briquettes. The results of our investigations showed that binders content increasing enhanced the thermomechanical stability and affected negatively the energy efficiency parameters of the studied briquettes. 展开更多
关键词 BIOMASS Charcoal briquette BINDER Energy Efficiency
下载PDF
Toward Adaptation of Briquettes Making Technology for Green Energy and Youth Employment in Tanzania: A Review
20
作者 Yusto Mugisha Yustas Werenfrid Michael Tarimo +6 位作者 Susan Andrew Mbacho Denis Olgen Kiobia Nelson Richard Makange Avitus Titus Kashaija Erasto Benedict Mukama Charles Kajanja Mzigo Festo Richard Silungwe 《Journal of Power and Energy Engineering》 2022年第4期74-93,共20页
Briquette technology is an alternative green energy source to offset the increasing demand for charcoal and firewood to save the forests and the environment while creating employment for youth and women. Using the sco... Briquette technology is an alternative green energy source to offset the increasing demand for charcoal and firewood to save the forests and the environment while creating employment for youth and women. Using the scoping and realistic review techniques, a review study was conducted to establish the briquette technology’s existence, and its value chain, identify stakeholders and challenges along the value chain and explore the policies supporting the technology and potential employment opportunities for youth in the green energy sector. The review results indicated that the briquette technology value chain consists of sourcing raw materials, production process, distribution, and consumption as its components while transportation, storage or packaging, marketing, and training are its supporting services. In addition, it was found that stakeholders in the value chain are manufacturers, producers, and supporting service providers who differ based on their formalities, such as groups, companies, government organizations, Non-Governmental Organizations (NGOs), institutions, and enterprises. Furthermore, five challenges were identified that impair the briquette adoption. They include the technology, raw materials, and the quality of briquettes, promotion, and marketing. Also, the study found that there are limited policies that provide a conducive environment for briquette technology to flourish. The study concludes that briquette technology exists in Tanzania. However, it is not yet matured as compared to the developed countries, and the technology is not backstopped by existing policies. The study recommends the briquette technology as a viable employment opportunity, especially for youth and women;therefore, the formulated briquette value chain should be utilized for easy coordination of stakeholders and deployment of the technology. Also, there is a need to create awareness and innovative strategies for promoting and engaging more stakeholders in the technology through the policies that explicitly insist on adopting the briquette technology. 展开更多
关键词 Renewable Energy briquetteS BIOMASS AWARENESS PERCEPTION ADOPTION
下载PDF
上一页 1 2 56 下一页 到第
使用帮助 返回顶部