Single cell temperature difference of lithium-ion battery(LIB) module will significantly affect the safety and cycle life of the battery. The reciprocating air-flow module created by a periodic reversal of the air flo...Single cell temperature difference of lithium-ion battery(LIB) module will significantly affect the safety and cycle life of the battery. The reciprocating air-flow module created by a periodic reversal of the air flow was investigated in an effort to mitigate the inherent temperature gradient problem of the conventional battery system with a unidirectional coolant flow with computational fluid dynamics(CFD). Orthogonal experiment and optimization design method based on computational fluid dynamics virtual experiments were developed. A set of optimized design factors for the cooling of reciprocating air flow of LIB thermal management was determined. The simulation experiments show that the reciprocating flow can achieve good heat dissipation, reduce the temperature difference, improve the temperature homogeneity and effectively lower the maximal temperature of the modular battery. The reciprocating flow improves the safety, long-term performance and life span of LIB.展开更多
In order to utilize the spontaneous accumulation of heat (SAH) reasonably and obtain the high quality sinter with low energy consumption, a lower fuel consumption modeling based on raw materials of a certain steel wor...In order to utilize the spontaneous accumulation of heat (SAH) reasonably and obtain the high quality sinter with low energy consumption, a lower fuel consumption modeling based on raw materials of a certain steel works was built. An air-flow segregation feeding (ASF) experimental equipment was designed to simulate strand feeding process and calculate the lower fuel consumption quantity. Compared with baseline test, the ASF experimental equipment was adopted. The results of sinter pot tests show that the solid fuel consumption is lower than that in baseline test, which is decreased by 5.8%. Meanwhile, other sinter indexes, such as pan yeild, tumbler strength and strand productivity are improved. The mineralogical examination indicates that the mineral compositions and micostructures are improved in sinter.展开更多
The large longitudinal impact of heavy-haul trains is the main factor limiting their development,and the asynchronous nature of train-braking systems is the main cause of this longitudinal impact.In this paper,a segme...The large longitudinal impact of heavy-haul trains is the main factor limiting their development,and the asynchronous nature of train-braking systems is the main cause of this longitudinal impact.In this paper,a segmented electro-pneumatic braking solution fully compatible with the existing freight-train braking system in China is proposed to improve the synchrony of train-braking systems.A simulation model for this braking system is developed based on air-flow theory,the 120 distribution valve and electronic control devices.The braking characteristics obtained from simulations are compared to those from the train-brake testing platform,and show high fidelity.On this basis,the effects of the new braking system on the braking capacity and longitudinal impact of a 20000 t heavy-haul train are analysed by further simulation.The results show that during service brakes,the segmented electro-pneumatic braking system can increase the braking capacity by 4.2–24.7%and reduce the coupler force by 21.6–68.0%.Therefore,it can be seen that the segmented electro-pneumatic braking system is a new type of electro-pneumatic brake that meets the needs of the Chinese railway network.It solves the problem of the longitudinal impact of heavy-haul trains satisfactorily,and its compatibility with the existing braking system(resulting in a reduced modification workload)makes it possible to maintain normal operations on heavy-haul lines while trains undergo modification.展开更多
As for the emerging and cut edge spatially resolved metabolomics,mass spectrometry imaging(MSI)is a powerful tool that can map thousands of metabolites from bio-tissue sections without chemical labels.However,the stab...As for the emerging and cut edge spatially resolved metabolomics,mass spectrometry imaging(MSI)is a powerful tool that can map thousands of metabolites from bio-tissue sections without chemical labels.However,the stability,sensitivity and spatial resolution of MSI are always limited by the performance of its ionization probe.Herein,two types of probes(fine probe(P-100)and large probe(P-200))were designed and characterized to perform air-flow assisted desorption electrospray ionization(AFA-DESI)MSI analysis for spatially resolved metabolomics.It was determined that the spray introduced by P-100 was homogenous and stable under the spray solvent at a flow rate of 5-10μL/min,while P-200 can endure a high flow rate of up to 10-30μL/min.Moreover,the MSI images were acquired by AFA-DESI-MSI with P-100 from rat brain tissue section and with P-200 from whole-body tissue section of mouse,and these results presented unambiguous tissue structure with the distribution information of numerous metabolites.Furthermore,the spatially resolved metabolomic analysis of tumor tissue was successfully realized to discover the tumor associated biomarkers.As the key parts of AFA-DESI-MSI system,it has been demonstrated that the designed probs have excellent performance for spatially resolved metabolomics,and it will further promote its application in life science,and drug research and development.展开更多
基金Project(50803008)supported by the National Natural Science Foundation of ChinaProjects(14JJ4035,2011RS4067)supported by the Natural Science Foundation of Hunan Province,China+1 种基金Project(2013-sdllmd-08)supported by the State Key Laboratory of Luminescent Materials and Devices(South China University of Technology),ChinaProjects(20100480946,201104508)supported by the China Postdoctoral Science Foundation,China
文摘Single cell temperature difference of lithium-ion battery(LIB) module will significantly affect the safety and cycle life of the battery. The reciprocating air-flow module created by a periodic reversal of the air flow was investigated in an effort to mitigate the inherent temperature gradient problem of the conventional battery system with a unidirectional coolant flow with computational fluid dynamics(CFD). Orthogonal experiment and optimization design method based on computational fluid dynamics virtual experiments were developed. A set of optimized design factors for the cooling of reciprocating air flow of LIB thermal management was determined. The simulation experiments show that the reciprocating flow can achieve good heat dissipation, reduce the temperature difference, improve the temperature homogeneity and effectively lower the maximal temperature of the modular battery. The reciprocating flow improves the safety, long-term performance and life span of LIB.
基金Project(NECT-04-0748) supported by New Century Excellent Talents Program of China
文摘In order to utilize the spontaneous accumulation of heat (SAH) reasonably and obtain the high quality sinter with low energy consumption, a lower fuel consumption modeling based on raw materials of a certain steel works was built. An air-flow segregation feeding (ASF) experimental equipment was designed to simulate strand feeding process and calculate the lower fuel consumption quantity. Compared with baseline test, the ASF experimental equipment was adopted. The results of sinter pot tests show that the solid fuel consumption is lower than that in baseline test, which is decreased by 5.8%. Meanwhile, other sinter indexes, such as pan yeild, tumbler strength and strand productivity are improved. The mineralogical examination indicates that the mineral compositions and micostructures are improved in sinter.
文摘The large longitudinal impact of heavy-haul trains is the main factor limiting their development,and the asynchronous nature of train-braking systems is the main cause of this longitudinal impact.In this paper,a segmented electro-pneumatic braking solution fully compatible with the existing freight-train braking system in China is proposed to improve the synchrony of train-braking systems.A simulation model for this braking system is developed based on air-flow theory,the 120 distribution valve and electronic control devices.The braking characteristics obtained from simulations are compared to those from the train-brake testing platform,and show high fidelity.On this basis,the effects of the new braking system on the braking capacity and longitudinal impact of a 20000 t heavy-haul train are analysed by further simulation.The results show that during service brakes,the segmented electro-pneumatic braking system can increase the braking capacity by 4.2–24.7%and reduce the coupler force by 21.6–68.0%.Therefore,it can be seen that the segmented electro-pneumatic braking system is a new type of electro-pneumatic brake that meets the needs of the Chinese railway network.It solves the problem of the longitudinal impact of heavy-haul trains satisfactorily,and its compatibility with the existing braking system(resulting in a reduced modification workload)makes it possible to maintain normal operations on heavy-haul lines while trains undergo modification.
基金financial support from the National Natural Science Foundation of China(Nos.81974500 and 81773678)the CAMS Innovation Fund for Medical Sciences(No.2022-I2M-2-001)。
文摘As for the emerging and cut edge spatially resolved metabolomics,mass spectrometry imaging(MSI)is a powerful tool that can map thousands of metabolites from bio-tissue sections without chemical labels.However,the stability,sensitivity and spatial resolution of MSI are always limited by the performance of its ionization probe.Herein,two types of probes(fine probe(P-100)and large probe(P-200))were designed and characterized to perform air-flow assisted desorption electrospray ionization(AFA-DESI)MSI analysis for spatially resolved metabolomics.It was determined that the spray introduced by P-100 was homogenous and stable under the spray solvent at a flow rate of 5-10μL/min,while P-200 can endure a high flow rate of up to 10-30μL/min.Moreover,the MSI images were acquired by AFA-DESI-MSI with P-100 from rat brain tissue section and with P-200 from whole-body tissue section of mouse,and these results presented unambiguous tissue structure with the distribution information of numerous metabolites.Furthermore,the spatially resolved metabolomic analysis of tumor tissue was successfully realized to discover the tumor associated biomarkers.As the key parts of AFA-DESI-MSI system,it has been demonstrated that the designed probs have excellent performance for spatially resolved metabolomics,and it will further promote its application in life science,and drug research and development.