To choose a reasonable mode of three-phase winding for the improvement of the operating efficiency of cascaded linear induction motor, the time and space characteristics of magnetomotive force were investigated. The i...To choose a reasonable mode of three-phase winding for the improvement of the operating efficiency of cascaded linear induction motor, the time and space characteristics of magnetomotive force were investigated. The ideal model of the cascaded linear induction motor was built, in which the B and C-phase windings are respectively separated from the A-phase winding by a distance of d and e slots pitch and not overlapped. By changing the values of d and e from 1 to 5, we can obtain 20 different modes of three-phase winding with the different combinations of d and e. Then, the air-gap magnetomotive forces of A-, B-, and C-phase windings were calculated by the magnetomotive force theory. According to the transient superposition of magnetomotive forces of A-, B-, and C-phase windings, the theoretical and simulated synthetic fundamental magnetomotive forces under 20 different arrangement modes were obtained. The results show that the synthetic magnetomotive force with d = 2 and e = 4 is close to forward sinusoidal traveling wave and the synthetic magnetomotive force with d = 4 and e = 2 is close to backward sinusoidal traveling wave, and their amplitudes and wave velocities are approximately constant and equal. In both cases, the motor could work normally with ahigh efficiency, but under other 18 arrangement modes (d= 1, e=2; d= 1, e=3; d= 1, e=4;...), the synthetic magnetomotive force presents obvious pulse vibration and moves with variable velocity, which means that the motor did not work normally and had high energy loss.展开更多
We propose a novel axis-symmetric modified hybrid permanent magnet(PM)/electromagnet(EM) magnetomotive force actuator for a variable valve timing camless engine. The design provides a large magnetic force with low ene...We propose a novel axis-symmetric modified hybrid permanent magnet(PM)/electromagnet(EM) magnetomotive force actuator for a variable valve timing camless engine. The design provides a large magnetic force with low energy consumption, low coil inductance, PM demagnetization isolation, and improved transient response. Simulation and experimental results confirm forces of about 200 N(in the presence of coil current) at the equilibrium position and 500 N(in the absence of coil current) at the armature seat. We compared our proposed design with a double solenoid valve actuator(DSVA). The finite element method(FEM) designs of the DSVA and our proposed valve actuator were validated by experiments performed on manufactured prototypes.展开更多
Compared to conventional distributed winding configurations,the fractional-slot non-overlapping(concentrated)windings exhibit advantages such as short end-winding length,high copper packing factor(particularly with se...Compared to conventional distributed winding configurations,the fractional-slot non-overlapping(concentrated)windings exhibit advantages such as short end-winding length,high copper packing factor(particularly with segmented stator structure),low cogging torque,good field weakening capability owing to relatively large d-axis inductance,and better fault tolerant capability due to low mutual inductance.However,one of the key problems of employing concentrated windings in Permanent-magnet Synchronous Machines(PMSMs)is the high eddy-current losses in rotor magnets and/or rotor iron due to the presence of a large number of lower and higher order space harmonics in the stator Magneto-Motive Force(MMF).These MMF harmonics also result in other undesirable effects,such as acoustic noise and vibrations,and localized core saturation which tend to reduce reluctance torque.This paper reviews the current state-of-the-art of the MMF harmonic reduction techniques for concentrated winding configurations in PMSMs,including winding split and shift,delta-star connected windings,multiple 3-phase windings,multilayer windings,uneven turn numbers,and stator flux barriers.Their concepts,advantages and disadvantages are presented and assessed.展开更多
在有铁心永磁直线电机(permanent magnet linear machines,PMLM)初级匝间短路故障分析中,对初级短路环电流的分析十分重要。该文提出采用磁动势–气隙磁导模型与电枢绕组故障等效模型结合的解析方法,计算任意初级位置发生的匝间短路故...在有铁心永磁直线电机(permanent magnet linear machines,PMLM)初级匝间短路故障分析中,对初级短路环电流的分析十分重要。该文提出采用磁动势–气隙磁导模型与电枢绕组故障等效模型结合的解析方法,计算任意初级位置发生的匝间短路故障短路环电流。首先根据永磁、电枢磁动势与开槽情况下的气隙磁导函数分别计算通过短路环的永磁、电枢磁链,然后通过矢量合成法得到短路环中的实际磁链以及瞬时短路电流。基于有限元方法证明解析法的正确性并探究不同短路故障匝数、不同短路故障位置对电机性能如短路环电流、相电流、推力的影响。最后制造一台样机验证有限元分析、解析法计算结果的正确性。展开更多
为了抑制复杂工况下变压器的直流偏磁,提出了考虑抑制措施的变压器绕组直流电流分布计算模型以及变压器直流偏磁风险的磁动势评估模型。通过实例对各种抑制措施的效果进行了交叉对比。结果表明:绕组的等效直流磁动势是变压器直流偏磁风...为了抑制复杂工况下变压器的直流偏磁,提出了考虑抑制措施的变压器绕组直流电流分布计算模型以及变压器直流偏磁风险的磁动势评估模型。通过实例对各种抑制措施的效果进行了交叉对比。结果表明:绕组的等效直流磁动势是变压器直流偏磁风险的决定性因素。在复杂运行工况下,不合理地使用抑制措施会令变压器直流偏磁危害加剧。电流注入法可以令自耦变串联绕组和公共绕组通过反向的直流电流,实现了等效磁动势的相互抵消,可以有效抑制复杂运行方式下500 k V变压器的直流偏磁危害。展开更多
基金supported by the National Magnetic Confinement Fusion Science Program 2011GB112001Program of International S&T Cooperation S2013ZR0595+2 种基金the financial support of the National Natural Science Foundation of China (No. 51271155)the Fundamental Research Funds for the Central Universities (SWJTU11ZT16, SWJTU11ZT31)the Science Foundation of Sichuan Province 2011JY0031, 2011JY0130
文摘To choose a reasonable mode of three-phase winding for the improvement of the operating efficiency of cascaded linear induction motor, the time and space characteristics of magnetomotive force were investigated. The ideal model of the cascaded linear induction motor was built, in which the B and C-phase windings are respectively separated from the A-phase winding by a distance of d and e slots pitch and not overlapped. By changing the values of d and e from 1 to 5, we can obtain 20 different modes of three-phase winding with the different combinations of d and e. Then, the air-gap magnetomotive forces of A-, B-, and C-phase windings were calculated by the magnetomotive force theory. According to the transient superposition of magnetomotive forces of A-, B-, and C-phase windings, the theoretical and simulated synthetic fundamental magnetomotive forces under 20 different arrangement modes were obtained. The results show that the synthetic magnetomotive force with d = 2 and e = 4 is close to forward sinusoidal traveling wave and the synthetic magnetomotive force with d = 4 and e = 2 is close to backward sinusoidal traveling wave, and their amplitudes and wave velocities are approximately constant and equal. In both cases, the motor could work normally with ahigh efficiency, but under other 18 arrangement modes (d= 1, e=2; d= 1, e=3; d= 1, e=4;...), the synthetic magnetomotive force presents obvious pulse vibration and moves with variable velocity, which means that the motor did not work normally and had high energy loss.
基金supported by the State Key Laboratory of Automotive Safety and Energy,Tsinghua University(No.KF14112)the State Key Laboratory of Engines,Tianjin University(No.K2014-6)
文摘We propose a novel axis-symmetric modified hybrid permanent magnet(PM)/electromagnet(EM) magnetomotive force actuator for a variable valve timing camless engine. The design provides a large magnetic force with low energy consumption, low coil inductance, PM demagnetization isolation, and improved transient response. Simulation and experimental results confirm forces of about 200 N(in the presence of coil current) at the equilibrium position and 500 N(in the absence of coil current) at the armature seat. We compared our proposed design with a double solenoid valve actuator(DSVA). The finite element method(FEM) designs of the DSVA and our proposed valve actuator were validated by experiments performed on manufactured prototypes.
文摘Compared to conventional distributed winding configurations,the fractional-slot non-overlapping(concentrated)windings exhibit advantages such as short end-winding length,high copper packing factor(particularly with segmented stator structure),low cogging torque,good field weakening capability owing to relatively large d-axis inductance,and better fault tolerant capability due to low mutual inductance.However,one of the key problems of employing concentrated windings in Permanent-magnet Synchronous Machines(PMSMs)is the high eddy-current losses in rotor magnets and/or rotor iron due to the presence of a large number of lower and higher order space harmonics in the stator Magneto-Motive Force(MMF).These MMF harmonics also result in other undesirable effects,such as acoustic noise and vibrations,and localized core saturation which tend to reduce reluctance torque.This paper reviews the current state-of-the-art of the MMF harmonic reduction techniques for concentrated winding configurations in PMSMs,including winding split and shift,delta-star connected windings,multiple 3-phase windings,multilayer windings,uneven turn numbers,and stator flux barriers.Their concepts,advantages and disadvantages are presented and assessed.
文摘在有铁心永磁直线电机(permanent magnet linear machines,PMLM)初级匝间短路故障分析中,对初级短路环电流的分析十分重要。该文提出采用磁动势–气隙磁导模型与电枢绕组故障等效模型结合的解析方法,计算任意初级位置发生的匝间短路故障短路环电流。首先根据永磁、电枢磁动势与开槽情况下的气隙磁导函数分别计算通过短路环的永磁、电枢磁链,然后通过矢量合成法得到短路环中的实际磁链以及瞬时短路电流。基于有限元方法证明解析法的正确性并探究不同短路故障匝数、不同短路故障位置对电机性能如短路环电流、相电流、推力的影响。最后制造一台样机验证有限元分析、解析法计算结果的正确性。
文摘为了抑制复杂工况下变压器的直流偏磁,提出了考虑抑制措施的变压器绕组直流电流分布计算模型以及变压器直流偏磁风险的磁动势评估模型。通过实例对各种抑制措施的效果进行了交叉对比。结果表明:绕组的等效直流磁动势是变压器直流偏磁风险的决定性因素。在复杂运行工况下,不合理地使用抑制措施会令变压器直流偏磁危害加剧。电流注入法可以令自耦变串联绕组和公共绕组通过反向的直流电流,实现了等效磁动势的相互抵消,可以有效抑制复杂运行方式下500 k V变压器的直流偏磁危害。
基金supported by National Natural Science Foundation of China(No.50807027)Ph.D.Candidate Scientific Research Innovation Foundation of Tsinghua University(No.2010025)