The dynamics of spin–orbit-coupled Bose–Einstein condensate with parity-time symmetry through a moving obstacle potential is simulated numerically. In the miscible two-component condensate, the formation of the K...The dynamics of spin–orbit-coupled Bose–Einstein condensate with parity-time symmetry through a moving obstacle potential is simulated numerically. In the miscible two-component condensate, the formation of the Kármán vortex street is observed in one component, while ‘the half-quantum vortex street' is observed in the other component. Other patterns of vortex shedding, such as oblique vortex dipoles, V-shaped vortex pairs, irregular turbulence, and combined modes of various wakes, can also be found. The ratio of inter-vortex spacing in one row to the distance between vortex rows is approximately0.18, which is less than the stability condition 0.28 of classical fluid. The drag force acting on the obstacle potential is simulated. The parametric regions of Kármán vortex street and other vortex patterns are calculated. The range of Kármán vortex street is surrounded by the region of combined modes. In addition, spin–orbit coupling disrupts the symmetry of the system and the gain-loss affects the local particle distribution of the system, which leads to the local symmetry breaking of the system, and finally influences the stability of the Kármán vortex street. Finally, we propose an experimental protocol to realize the Kármán vortex street in a system.展开更多
We investigate asymmetric spin wave scattering behaviors caused by vortex chirality in a cross-shaped ferromagnetic system by using the micromagnetic simulations.In the system,four scattering behaviors are found:(i)as...We investigate asymmetric spin wave scattering behaviors caused by vortex chirality in a cross-shaped ferromagnetic system by using the micromagnetic simulations.In the system,four scattering behaviors are found:(i)asymmetric skew scattering,depending on the polarity of vortex core,(ii)back scattering(reflection),depending on the vortex core stiffness,(iii)side deflection scattering,depending on structural symmetry of the vortex circulation,and(iv)geometrical scattering,depending on waveguide structure.The first and second scattering behaviors are attributed to nonlinear topological magnon spin Hall effect related to magnon spin-transfer torque effect,which has value for magnonic exploration and application.展开更多
We investigated the spin splitting of vortex beam on the surface of biaxial natural hyperbolic materials(NHMs)rotated by an angle with respect to the incident plane. An obvious asymmetry of spatial shifts produced by ...We investigated the spin splitting of vortex beam on the surface of biaxial natural hyperbolic materials(NHMs)rotated by an angle with respect to the incident plane. An obvious asymmetry of spatial shifts produced by the left-handed circularly(LCP) component and right-handed circularly polarized(RCP) component is exhibited. We derived the analytical expression for in-and out-of-plane spatial shifts for each spin component of the vortex beam. The orientation angle of the optical axis plays a key role in the spin splitting between the two spin components, which can be reflected in the simple expressions for spatial shifts without the rotation angle. Based on an α-MoO_(3) biaxial NHM, the spatial shifts of the two spin components with the topological charge were investigated. As the topological charge increases, the spatial shifts also increase;in addition, a tiny spatial shift close to zero can be obtained if we control the incident frequency or the polarization of the reflected beams. It can also be concluded that the maximum of the spin splitting results from the LCP component at p-incidence and the RCP component at s-incidence in the RB-Ⅱ hyperbolic frequency band. The effect of the incident angle and the thickness of the α-MoO_(3) film on spin splitting is also considered. These results can be used for manipulating infrared radiation and optical detection.展开更多
A three-dimensional computational fluid dynamics model is developed by software Fluent 6.2, to simulate the flow field inside the nozzle block of the Murata vortex spinning. The flowing state and the distribution law ...A three-dimensional computational fluid dynamics model is developed by software Fluent 6.2, to simulate the flow field inside the nozzle block of the Murata vortex spinning. The flowing state and the distribution law of static pressure and velocity are characterized and analyzed. The relationship between the flowing state and the structure of the vortex spun yarn is also discussed. The research results can enhance the understanding of the yarn formation principle from viewpoint of the airflow field law inside the nozzle block of Murata vortex spinning.展开更多
Based on the mechanical system of free-end fibers and the analysis of pulling free-end fibers out of the spun yarn during spinning,a low-fiber hollow spindle is designed and the air distribution of fluent field is sim...Based on the mechanical system of free-end fibers and the analysis of pulling free-end fibers out of the spun yarn during spinning,a low-fiber hollow spindle is designed and the air distribution of fluent field is simulated numerically. The negative pressure effect is much bigger at the top of low-fiber hollow spindle than that in Murata No.861,which is more conducive for single fiber to get into the channel of hollow spindle. The tangential velocity in 0-3 mm at the top of hollow spindle increases and the fluctuation of radial velocity is much stronger,which enhance the wrapping effect. In the addition,the distribution of axial velocity remains the same.展开更多
Switching the orientation of a vortex core by spin-polarised pulse current introduces a promising concept for the reliable addressing of a single nanodisc element inside dense arrays. In this paper, micromagnetic simu...Switching the orientation of a vortex core by spin-polarised pulse current introduces a promising concept for the reliable addressing of a single nanodisc element inside dense arrays. In this paper, micromagnetic simulations are employed to study the vortex core switching behaviour excited by a short in-plane Gaussian current pulse. We find that both the switching mechanism and the switching time are not sensitive to changes in the phenomenological parameters of spin-torque nonadiabaticity and Gilbert damping. The switching time, however, strongly depends on the current strength. In addition, we have theoretically predicted the parameter range of current pulses to achieve a single switching event.展开更多
To explore the effect of non-uniform polarization on orbital angular momentum(OAM) in anisotropic medium, in this work investigated are the evolution of the spiral spectra and OAM densities of non-uniformly polarized ...To explore the effect of non-uniform polarization on orbital angular momentum(OAM) in anisotropic medium, in this work investigated are the evolution of the spiral spectra and OAM densities of non-uniformly polarized vortex(NUPV)beams in uniaxial crystals propagating orthogonal to the optical axis, and also the case of uniformly polarized vortex(UPV)beams with left-handed elliptical polarization. In the input plane, the NUPV beams present their spiral spectra of m-mode concentrated at m = l ± 1 modes rather than m = l mode, and reveal the relation among topological charge l, mode of spiral spectra m and the power weight value Rmexpressed by l=∑^(∞)_(m)=-∞Rm. is still satisfied for UPV beams in uniaxially anisotropic crystals, whereas for NUPV beams their relations are no longer valid owing to non-uniform polarization. Furthermore, the analysis indicates that the asymmetrical distribution of power weight of spiral spectra and the non-zero value in the sum of longitudinal OAM densities originate from the initial non-uniform polarization and anisotropy in uniaxial crystals rather than topological charges. In addition, the relation between spiral spectrum and longitudinal OAM density is numerically discussed. This work may provide an avenue for OAM-based communications,optical metrology, and imaging by varying the initial non-uniform polarization.展开更多
Based on Duan's topological current theory,we show that in a ferromagnetic spin-triplet superconductor there is a topological defect of string structures which can be interpreted as vortex lines.Such defects are diff...Based on Duan's topological current theory,we show that in a ferromagnetic spin-triplet superconductor there is a topological defect of string structures which can be interpreted as vortex lines.Such defects are different from the Abrikosov vortices in one-component condensate systems.We investigate the inner topological structure of the vortex lines.The topological charge density,velocity,and topological current of the vortex lines can all be expressed in terms of 未 function,which indicates that the vortices can only arise from the zero points of an order parameter field.The topological charges of vortex lines are quantized in terms of the Hopf indices and Brouwer degrees of-mapping.The divergence of the self-induced magnetic field can be rigorously determined by the corresponding order parameter fields and its expression also takes the form of a 未-like function.Finally,based on the implicit function theorem and the Taylor expansion,we conduct detailed studies on the bifurcation of vortex topological current and find different directions of the bifurcation.展开更多
We perform micromagnetic simulations on the switching of magnetic vortex core by using spin-polarized currents through a three-nanocontact geometry. Our simulation results show that the current combination with an app...We perform micromagnetic simulations on the switching of magnetic vortex core by using spin-polarized currents through a three-nanocontact geometry. Our simulation results show that the current combination with an appropriate current flow direction destroys the symmetry of the total effective energy of the system so that the vortex core can be easier to excite,resulting in less critical current density and a faster switching process. Besides its fundamental significance, our findings provide an additional route to incorporating magnetic vortex phenomena into data storage devices.展开更多
A vortex domain wall's(VW) magnetic racetrack memory's high performance depends on VW structural stability,high speed, low power consumption and high storage density. In this study, these critical parameters w...A vortex domain wall's(VW) magnetic racetrack memory's high performance depends on VW structural stability,high speed, low power consumption and high storage density. In this study, these critical parameters were investigated in magnetic multi-segmented nanowires using micromagnetic simulation. Thus, an offset magnetic nanowire with a junction at the center was proposed for this purpose. This junction was implemented by shifting one portion of the magnetic nanowire horizontally in the x-direction(l) and vertically(d) in the y-direction. The VW structure became stable by manipulating magnetic properties, such as magnetic saturation(M_(4)) and magnetic anisotropy energy(K_(u)). In this case, increasing the values of M_(4) ≥ 800 kA/m keeps the VW structure stable during its dynamics and pinning and depinning in offset nanowires,which contributes to maintenance of the storage memory's lifetime for a longer period. It was also found that the VW moved with a speed of 500 m/s, which is desirable for VW racetrack memory devices. Moreover, it was revealed that the VW velocity could be controlled by adjusting the offset area dimensions(l and d), which helps to drive the VW by using low current densities and reducing the thermal-magnetic spin fluctuations. Further, the depinning current density of the VW(J_(d)) over the offset area increases as d increases and l decreases. In addition, magnetic properties, such as the M_(4) and K_(u),can affect the depinning process of the VW through the offset area. For high storage density, magnetic nanowires(multisegmented) with four junctions were designed. In total, six states were found with high VW stability, which means three bits per cell. Herein, we observed that the depinning current density(J_(d)) for moving the VW from one state to another was highly influenced by the offset area geometry(l and d) and the material's magnetic properties, such as the M_(4) and K_(u).展开更多
Based on Duan’s topological current theory,we show that in a ferromagnetic spin-triplet superconductor there is a topological defect of string structures which can be interpreted as vortex lines.Such defects are diff...Based on Duan’s topological current theory,we show that in a ferromagnetic spin-triplet superconductor there is a topological defect of string structures which can be interpreted as vortex lines.Such defects are different from the Abrikosov vortices in one-component condensate systems.We investigate the inner topological structure of the vortex lines.The topological charge density,velocity,and topological current of the vortex lines can all be expressed in terms of δ function,which indicates that the vortices can only arise from the zero points of an order parameter field.The topological charges of vortex lines are quantized in terms of the Hopf indices and Brouwer degrees of-mapping.The divergence of the self-induced magnetic field can be rigorously determined by the corresponding order parameter fields and its expression also takes the form of a δ-like function.Finally,based on the implicit function theorem and the Taylor expansion,we conduct detailed studies on the bifurcation of vortex topological current and find different directions of the bifurcation.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 12065022 and 12147213)。
文摘The dynamics of spin–orbit-coupled Bose–Einstein condensate with parity-time symmetry through a moving obstacle potential is simulated numerically. In the miscible two-component condensate, the formation of the Kármán vortex street is observed in one component, while ‘the half-quantum vortex street' is observed in the other component. Other patterns of vortex shedding, such as oblique vortex dipoles, V-shaped vortex pairs, irregular turbulence, and combined modes of various wakes, can also be found. The ratio of inter-vortex spacing in one row to the distance between vortex rows is approximately0.18, which is less than the stability condition 0.28 of classical fluid. The drag force acting on the obstacle potential is simulated. The parametric regions of Kármán vortex street and other vortex patterns are calculated. The range of Kármán vortex street is surrounded by the region of combined modes. In addition, spin–orbit coupling disrupts the symmetry of the system and the gain-loss affects the local particle distribution of the system, which leads to the local symmetry breaking of the system, and finally influences the stability of the Kármán vortex street. Finally, we propose an experimental protocol to realize the Kármán vortex street in a system.
基金Project supported by the Basic Science Research Program of the National Research Foundation of Korea(Grant No.2021R1F1A1050539)the Yanbian University Research Project(Grant No.482022104)the Yichang Natural Science Research Project(Grant No.A22-3-010)。
文摘We investigate asymmetric spin wave scattering behaviors caused by vortex chirality in a cross-shaped ferromagnetic system by using the micromagnetic simulations.In the system,four scattering behaviors are found:(i)asymmetric skew scattering,depending on the polarity of vortex core,(ii)back scattering(reflection),depending on the vortex core stiffness,(iii)side deflection scattering,depending on structural symmetry of the vortex circulation,and(iv)geometrical scattering,depending on waveguide structure.The first and second scattering behaviors are attributed to nonlinear topological magnon spin Hall effect related to magnon spin-transfer torque effect,which has value for magnonic exploration and application.
基金Project supported by the Natural Science Foundation of Heilongjiang Province of China (Grant No. LH2022F041)。
文摘We investigated the spin splitting of vortex beam on the surface of biaxial natural hyperbolic materials(NHMs)rotated by an angle with respect to the incident plane. An obvious asymmetry of spatial shifts produced by the left-handed circularly(LCP) component and right-handed circularly polarized(RCP) component is exhibited. We derived the analytical expression for in-and out-of-plane spatial shifts for each spin component of the vortex beam. The orientation angle of the optical axis plays a key role in the spin splitting between the two spin components, which can be reflected in the simple expressions for spatial shifts without the rotation angle. Based on an α-MoO_(3) biaxial NHM, the spatial shifts of the two spin components with the topological charge were investigated. As the topological charge increases, the spatial shifts also increase;in addition, a tiny spatial shift close to zero can be obtained if we control the incident frequency or the polarization of the reflected beams. It can also be concluded that the maximum of the spin splitting results from the LCP component at p-incidence and the RCP component at s-incidence in the RB-Ⅱ hyperbolic frequency band. The effect of the incident angle and the thickness of the α-MoO_(3) film on spin splitting is also considered. These results can be used for manipulating infrared radiation and optical detection.
基金This project is supported by the National Natural Science Foundation of China,under grant No.10872047.
文摘A three-dimensional computational fluid dynamics model is developed by software Fluent 6.2, to simulate the flow field inside the nozzle block of the Murata vortex spinning. The flowing state and the distribution law of static pressure and velocity are characterized and analyzed. The relationship between the flowing state and the structure of the vortex spun yarn is also discussed. The research results can enhance the understanding of the yarn formation principle from viewpoint of the airflow field law inside the nozzle block of Murata vortex spinning.
基金Program for Changjiang Scholars and Innovative Research Team in University,China(No.IRT1220)Shanghai Natural Science Foundation,China(No.13ZR1400900)Keygrant Project of Chinese Ministry of Education(No.113027A)
文摘Based on the mechanical system of free-end fibers and the analysis of pulling free-end fibers out of the spun yarn during spinning,a low-fiber hollow spindle is designed and the air distribution of fluent field is simulated numerically. The negative pressure effect is much bigger at the top of low-fiber hollow spindle than that in Murata No.861,which is more conducive for single fiber to get into the channel of hollow spindle. The tangential velocity in 0-3 mm at the top of hollow spindle increases and the fluctuation of radial velocity is much stronger,which enhance the wrapping effect. In the addition,the distribution of axial velocity remains the same.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 50871075 and 10974142)the Natural Science Foundation of Shanghai,China (Grant No. 08ZR1420500)
文摘Switching the orientation of a vortex core by spin-polarised pulse current introduces a promising concept for the reliable addressing of a single nanodisc element inside dense arrays. In this paper, micromagnetic simulations are employed to study the vortex core switching behaviour excited by a short in-plane Gaussian current pulse. We find that both the switching mechanism and the switching time are not sensitive to changes in the phenomenological parameters of spin-torque nonadiabaticity and Gilbert damping. The switching time, however, strongly depends on the current strength. In addition, we have theoretically predicted the parameter range of current pulses to achieve a single switching event.
基金supported by the Science and Technology Program of Sichuan Province, China (Grant No. 23NSFSC1097)。
文摘To explore the effect of non-uniform polarization on orbital angular momentum(OAM) in anisotropic medium, in this work investigated are the evolution of the spiral spectra and OAM densities of non-uniformly polarized vortex(NUPV)beams in uniaxial crystals propagating orthogonal to the optical axis, and also the case of uniformly polarized vortex(UPV)beams with left-handed elliptical polarization. In the input plane, the NUPV beams present their spiral spectra of m-mode concentrated at m = l ± 1 modes rather than m = l mode, and reveal the relation among topological charge l, mode of spiral spectra m and the power weight value Rmexpressed by l=∑^(∞)_(m)=-∞Rm. is still satisfied for UPV beams in uniaxially anisotropic crystals, whereas for NUPV beams their relations are no longer valid owing to non-uniform polarization. Furthermore, the analysis indicates that the asymmetrical distribution of power weight of spiral spectra and the non-zero value in the sum of longitudinal OAM densities originate from the initial non-uniform polarization and anisotropy in uniaxial crystals rather than topological charges. In addition, the relation between spiral spectrum and longitudinal OAM density is numerically discussed. This work may provide an avenue for OAM-based communications,optical metrology, and imaging by varying the initial non-uniform polarization.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.10905026 and 10905027)the Specialized Research Fund for the Doctoral Program of Higher Education(Grant No.20090211120030)the Lanzhou Development of Science and Technology Program,China(Grant No.2010-1-129)
文摘Based on Duan's topological current theory,we show that in a ferromagnetic spin-triplet superconductor there is a topological defect of string structures which can be interpreted as vortex lines.Such defects are different from the Abrikosov vortices in one-component condensate systems.We investigate the inner topological structure of the vortex lines.The topological charge density,velocity,and topological current of the vortex lines can all be expressed in terms of 未 function,which indicates that the vortices can only arise from the zero points of an order parameter field.The topological charges of vortex lines are quantized in terms of the Hopf indices and Brouwer degrees of-mapping.The divergence of the self-induced magnetic field can be rigorously determined by the corresponding order parameter fields and its expression also takes the form of a 未-like function.Finally,based on the implicit function theorem and the Taylor expansion,we conduct detailed studies on the bifurcation of vortex topological current and find different directions of the bifurcation.
基金supported by the China Postdoctoral Science Foundation(Grant No.2013M541286)the Science and Technology Planning Project of Jilin Province,China(Grant Nos.20140520109JH and 20150414003GH)the “Twelfth Five year” Scientific and Technological Research Project of Department of Education of Jilin Province,China
文摘We perform micromagnetic simulations on the switching of magnetic vortex core by using spin-polarized currents through a three-nanocontact geometry. Our simulation results show that the current combination with an appropriate current flow direction destroys the symmetry of the total effective energy of the system so that the vortex core can be easier to excite,resulting in less critical current density and a faster switching process. Besides its fundamental significance, our findings provide an additional route to incorporating magnetic vortex phenomena into data storage devices.
文摘A vortex domain wall's(VW) magnetic racetrack memory's high performance depends on VW structural stability,high speed, low power consumption and high storage density. In this study, these critical parameters were investigated in magnetic multi-segmented nanowires using micromagnetic simulation. Thus, an offset magnetic nanowire with a junction at the center was proposed for this purpose. This junction was implemented by shifting one portion of the magnetic nanowire horizontally in the x-direction(l) and vertically(d) in the y-direction. The VW structure became stable by manipulating magnetic properties, such as magnetic saturation(M_(4)) and magnetic anisotropy energy(K_(u)). In this case, increasing the values of M_(4) ≥ 800 kA/m keeps the VW structure stable during its dynamics and pinning and depinning in offset nanowires,which contributes to maintenance of the storage memory's lifetime for a longer period. It was also found that the VW moved with a speed of 500 m/s, which is desirable for VW racetrack memory devices. Moreover, it was revealed that the VW velocity could be controlled by adjusting the offset area dimensions(l and d), which helps to drive the VW by using low current densities and reducing the thermal-magnetic spin fluctuations. Further, the depinning current density of the VW(J_(d)) over the offset area increases as d increases and l decreases. In addition, magnetic properties, such as the M_(4) and K_(u),can affect the depinning process of the VW through the offset area. For high storage density, magnetic nanowires(multisegmented) with four junctions were designed. In total, six states were found with high VW stability, which means three bits per cell. Herein, we observed that the depinning current density(J_(d)) for moving the VW from one state to another was highly influenced by the offset area geometry(l and d) and the material's magnetic properties, such as the M_(4) and K_(u).
基金Project supported by the National Natural Science Foundation of China(Grant Nos.10905026 and 10905027)the Specialized Research Fund for the Doctoral Program of Higher Education(Grant No.20090211120030)the Lanzhou Development of Science and Technology Program,China(Grant No.2010-1-129)
文摘Based on Duan’s topological current theory,we show that in a ferromagnetic spin-triplet superconductor there is a topological defect of string structures which can be interpreted as vortex lines.Such defects are different from the Abrikosov vortices in one-component condensate systems.We investigate the inner topological structure of the vortex lines.The topological charge density,velocity,and topological current of the vortex lines can all be expressed in terms of δ function,which indicates that the vortices can only arise from the zero points of an order parameter field.The topological charges of vortex lines are quantized in terms of the Hopf indices and Brouwer degrees of-mapping.The divergence of the self-induced magnetic field can be rigorously determined by the corresponding order parameter fields and its expression also takes the form of a δ-like function.Finally,based on the implicit function theorem and the Taylor expansion,we conduct detailed studies on the bifurcation of vortex topological current and find different directions of the bifurcation.