A new method, Collaborative Allocation (CA), is proposed to solve the large-scale optimum allocation problem in aircraft conceptual design. According to the characteristics of optimum allocation in aircraft conceptu...A new method, Collaborative Allocation (CA), is proposed to solve the large-scale optimum allocation problem in aircraft conceptual design. According to the characteristics of optimum allocation in aircraft conceptual design. The principle and mathematical model of CA are established. The optimum allocation problem is decomposed into one main optimization problem and several sub-optimization problems. A group of design requirements for subsystems are provided by the main system respectively, and the subsystems execute their own optimizations or further provide the detailed design requirements to the bottom components of aircraft, such as spars, ribs and skins, etc. The subsystems minimize the discrepancy between their own local variables and the corresponding allocated values, and then return the optimization results to main optimization. The main optimization is performed to reallocate the design requirements for improving the integration performance and progressing toward the compatibilities among subsystems. CA provides the general optimum allocation architecture and is easy to be carried out. Furthermore, the concurrent computation can also be realized. Two examples of optimum reliability allocation are used to describe the implementation procedure of CA for two-level allocation and three-level allocation respectively, and to validate preliminarily its correctness and effectiveness. It is shown that the developed method can be successfully used in optimum allocation of design requirements. Then taking weight requirement allocation as example, the mathematical model and solution procedure for collaborative allocation of design requirements in aircraft conceptual design are briefly depicted.展开更多
In the context of applying computer aided design tools to aircraft conceptualdesign, a sketch based approach is proposed to help designers turn their original concepts intocomplex numerical models that are usable for ...In the context of applying computer aided design tools to aircraft conceptualdesign, a sketch based approach is proposed to help designers turn their original concepts intocomplex numerical models that are usable for further analysis and optimization. This approachemphasizes the integration of general configuration and the layout of such components as engines,payloads, fuel tanks and landing gears, and the representation of a design scheme as uniform planesketches and three dimensional models. This paper presents the measures adopted to implement theapproach in a prototype system, including the object-oriented data structure, friendly graphicaluser interfaces and basic features of relevant modules. Several examples generated in the prototypeand applications of the results are finally outlined to illustrate the effectiveness of theapproach.展开更多
The concept of joined-wing aircraft with nonplanar wings as conceived and patented by Wolkovitch is attractive due to various advantages such as light weight, high stiffness, low induced drag, high trimmed CLmax, redu...The concept of joined-wing aircraft with nonplanar wings as conceived and patented by Wolkovitch is attractive due to various advantages such as light weight, high stiffness, low induced drag, high trimmed CLmax, reduced wetted area and parasite drag and good stability and control, which have been supported by independent analyses, design studies and wind tunnel tests. With such foreseen advantages, the present work is carried out to design joined-wing business-jet aircraft and study and investigate its advantages and benefits as compared to the current available conventional business jet of similar size, passenger and payload capacity. In particular, the work searches for a conceptual design of joined-wing configured business-jet aircraft that possesses more superior characteristics and better aerodynamic performance in terms of increased lift and reduced drag, and lighter than the conventional business jet of similar size. Another significant objective of this work is to prove that the added rigidity possessed by the joined wing configuration can contribute to weight reduction.展开更多
Aircraft conceptual design optimizations that maximize the performance at a design condition (single-point) may result in designs with unsatisfying off-design performance. To further improve aircraft efficiency unde...Aircraft conceptual design optimizations that maximize the performance at a design condition (single-point) may result in designs with unsatisfying off-design performance. To further improve aircraft efficiency under actual flight operations, there is a need to consider multiple flight conditions (multipoint) in aircraft conceptual design and optimization. A new strategy for multipoint optimizations in aircraft conceptual design is proposed in this paper. A wide-body aircraft is taken as an example for both single-point and multipoint optimizations with the objective of maximizing the specific hourly productivity. Boeing 787-8 flight data was used in the multipoint opti- mization to reflect the true objective function. The results show that the optimal design from the multipoint optimization has a 7.72% total specific hourly productivity increase of entire flight missions compared with that of the baseline aircraft, while the increase in the total specific hourly productivity from the single-point optimal design is only 5.73%. The differences between the results of single-point and multipoint optimizations indicate that there is a good option to further improve aircraft efficiency by considering actual flight conditions in aircraft conceptual design and optimization.展开更多
The Blended-Wing-Body(BWB) is an unconventional configuration of aircraft and considered as a potential configuration for future commercial aircraft. One of the difficulties in conceptual design of a BWB aircraft is s...The Blended-Wing-Body(BWB) is an unconventional configuration of aircraft and considered as a potential configuration for future commercial aircraft. One of the difficulties in conceptual design of a BWB aircraft is structural mass prediction due to its unique structural feature. This paper presents a structural mass prediction method for conceptual design of BWB aircraft using a structure analysis and optimization method combined with empirical calibrations. The total BWB structural mass is divided into the ideal load-carrying structural mass, non-ideal mass, and secondary structural mass. Structural finite element analysis and optimization are used to predict the ideal primary structural mass, while the non-ideal mass and secondary structural mass are estimated by empirical methods. A BWB commercial aircraft is used to demonstrate the procedure of the BWB structural mass prediction method. The predicted mass of structural components of the BWB aircraft is presented, and the ratios of the structural component mass to the Maximum TakeOff Mass(MTOM) are discussed. It is found that the ratio of the fuselage mass to the MTOM for the BWB aircraft is much higher than that for a conventional commercial aircraft, and the ratio of the wing mass to the MTOM for the BWB aircraft is slightly lower than that for a conventional aircraft.展开更多
基金National Natural Science Foundation of China (10377015)
文摘A new method, Collaborative Allocation (CA), is proposed to solve the large-scale optimum allocation problem in aircraft conceptual design. According to the characteristics of optimum allocation in aircraft conceptual design. The principle and mathematical model of CA are established. The optimum allocation problem is decomposed into one main optimization problem and several sub-optimization problems. A group of design requirements for subsystems are provided by the main system respectively, and the subsystems execute their own optimizations or further provide the detailed design requirements to the bottom components of aircraft, such as spars, ribs and skins, etc. The subsystems minimize the discrepancy between their own local variables and the corresponding allocated values, and then return the optimization results to main optimization. The main optimization is performed to reallocate the design requirements for improving the integration performance and progressing toward the compatibilities among subsystems. CA provides the general optimum allocation architecture and is easy to be carried out. Furthermore, the concurrent computation can also be realized. Two examples of optimum reliability allocation are used to describe the implementation procedure of CA for two-level allocation and three-level allocation respectively, and to validate preliminarily its correctness and effectiveness. It is shown that the developed method can be successfully used in optimum allocation of design requirements. Then taking weight requirement allocation as example, the mathematical model and solution procedure for collaborative allocation of design requirements in aircraft conceptual design are briefly depicted.
文摘In the context of applying computer aided design tools to aircraft conceptualdesign, a sketch based approach is proposed to help designers turn their original concepts intocomplex numerical models that are usable for further analysis and optimization. This approachemphasizes the integration of general configuration and the layout of such components as engines,payloads, fuel tanks and landing gears, and the representation of a design scheme as uniform planesketches and three dimensional models. This paper presents the measures adopted to implement theapproach in a prototype system, including the object-oriented data structure, friendly graphicaluser interfaces and basic features of relevant modules. Several examples generated in the prototypeand applications of the results are finally outlined to illustrate the effectiveness of theapproach.
文摘The concept of joined-wing aircraft with nonplanar wings as conceived and patented by Wolkovitch is attractive due to various advantages such as light weight, high stiffness, low induced drag, high trimmed CLmax, reduced wetted area and parasite drag and good stability and control, which have been supported by independent analyses, design studies and wind tunnel tests. With such foreseen advantages, the present work is carried out to design joined-wing business-jet aircraft and study and investigate its advantages and benefits as compared to the current available conventional business jet of similar size, passenger and payload capacity. In particular, the work searches for a conceptual design of joined-wing configured business-jet aircraft that possesses more superior characteristics and better aerodynamic performance in terms of increased lift and reduced drag, and lighter than the conventional business jet of similar size. Another significant objective of this work is to prove that the added rigidity possessed by the joined wing configuration can contribute to weight reduction.
基金supported by the Fundamental Research Funds for Central Universities(NUAA NS2016010)
文摘Aircraft conceptual design optimizations that maximize the performance at a design condition (single-point) may result in designs with unsatisfying off-design performance. To further improve aircraft efficiency under actual flight operations, there is a need to consider multiple flight conditions (multipoint) in aircraft conceptual design and optimization. A new strategy for multipoint optimizations in aircraft conceptual design is proposed in this paper. A wide-body aircraft is taken as an example for both single-point and multipoint optimizations with the objective of maximizing the specific hourly productivity. Boeing 787-8 flight data was used in the multipoint opti- mization to reflect the true objective function. The results show that the optimal design from the multipoint optimization has a 7.72% total specific hourly productivity increase of entire flight missions compared with that of the baseline aircraft, while the increase in the total specific hourly productivity from the single-point optimal design is only 5.73%. The differences between the results of single-point and multipoint optimizations indicate that there is a good option to further improve aircraft efficiency by considering actual flight conditions in aircraft conceptual design and optimization.
基金supported by the National Natural Science Foundation of China (No. 11432007)
文摘The Blended-Wing-Body(BWB) is an unconventional configuration of aircraft and considered as a potential configuration for future commercial aircraft. One of the difficulties in conceptual design of a BWB aircraft is structural mass prediction due to its unique structural feature. This paper presents a structural mass prediction method for conceptual design of BWB aircraft using a structure analysis and optimization method combined with empirical calibrations. The total BWB structural mass is divided into the ideal load-carrying structural mass, non-ideal mass, and secondary structural mass. Structural finite element analysis and optimization are used to predict the ideal primary structural mass, while the non-ideal mass and secondary structural mass are estimated by empirical methods. A BWB commercial aircraft is used to demonstrate the procedure of the BWB structural mass prediction method. The predicted mass of structural components of the BWB aircraft is presented, and the ratios of the structural component mass to the Maximum TakeOff Mass(MTOM) are discussed. It is found that the ratio of the fuselage mass to the MTOM for the BWB aircraft is much higher than that for a conventional commercial aircraft, and the ratio of the wing mass to the MTOM for the BWB aircraft is slightly lower than that for a conventional aircraft.