期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
Advanced Aircraft Power Electronics Systems- the impact of simulation, standards and wide band-gap devices
1
作者 Peter R.Wilson 《CES Transactions on Electrical Machines and Systems》 2017年第1期72-82,共11页
The rapid pace of change in the wide band gap(WBG)power semiconductor area has led to an explosion in potential uses for WBG devices in a huge variety of applications.The applications include automotive,aerospace and ... The rapid pace of change in the wide band gap(WBG)power semiconductor area has led to an explosion in potential uses for WBG devices in a huge variety of applications.The applications include automotive,aerospace and traction applications,as well as grid related or charging systems,with the potential to provide paradigm shifts in performance and efficiency over Silicon devices in current use today.Despite these exciting developments,however,there are still many outstanding challenges for both researchers and industry to solve before WBG technology becomes pervasive.In this paper we will explore some of these challenges and highlight the strengths of WBG devices,some of the specific issues for machine drives and develop some potential solutions for future developments in power electronics. 展开更多
关键词 aircraft power systems power electronics wide band gap semi-conductors.
下载PDF
Technologies and studies of gas exchange in two-stroke aircraft piston engine:A review 被引量:2
2
作者 Yu ZHOU Xueyu LI +6 位作者 Shuiting DING Shuai ZHAO Kun ZHU Longtao SHAO Farong DU Gerui WANG Zheng XU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第1期24-50,共27页
The in-cylinder gas exchange process is crucial to the power performance of two-stroke aircraft piston engines,which is easily influenced by complex factors such as high-altitude performance variation and in-cylinder ... The in-cylinder gas exchange process is crucial to the power performance of two-stroke aircraft piston engines,which is easily influenced by complex factors such as high-altitude performance variation and in-cylinder flow characteristics.This paper reviews the development history and characteristics of gas exchange types,as well as the current state of theory and the validation methods of gas exchange technology,while also discusses the trends of cutting-edge technologies in the field.This paper provides a theoretical foundation for the optimization and engineering design of gas exchange systems and,more importantly,points out that the innovation of gas exchange types,the modification of theoretical models,and the technology of variable airflow organization are the key future research directions in this field. 展开更多
关键词 aircraft piston engine aircraft power systems Gas exchange High-altitude performance In-cylinder flow TWO-STROKE Unmanned Aerial Vehicles(UAVs)
原文传递
An Iterative Pose Estimation Algorithm Based on Epipolar Geometry With Application to Multi-Target Tracking 被引量:3
3
作者 Jacob H.White Randal W.Beard 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2020年第4期942-953,共12页
This paper introduces a new algorithm for estimating the relative pose of a moving camera using consecutive frames of a video sequence. State-of-the-art algorithms for calculating the relative pose between two images ... This paper introduces a new algorithm for estimating the relative pose of a moving camera using consecutive frames of a video sequence. State-of-the-art algorithms for calculating the relative pose between two images use matching features to estimate the essential matrix. The essential matrix is then decomposed into the relative rotation and normalized translation between frames. To be robust to noise and feature match outliers, these methods generate a large number of essential matrix hypotheses from randomly selected minimal subsets of feature pairs, and then score these hypotheses on all feature pairs. Alternatively, the algorithm introduced in this paper calculates relative pose hypotheses by directly optimizing the rotation and normalized translation between frames, rather than calculating the essential matrix and then performing the decomposition. The resulting algorithm improves computation time by an order of magnitude. If an inertial measurement unit(IMU) is available, it is used to seed the optimizer, and in addition, we reuse the best hypothesis at each iteration to seed the optimizer thereby reducing the number of relative pose hypotheses that must be generated and scored. These advantages greatly speed up performance and enable the algorithm to run in real-time on low cost embedded hardware. We show application of our algorithm to visual multi-target tracking(MTT) in the presence of parallax and demonstrate its real-time performance on a 640 × 480 video sequence captured on a UAV. Video results are available at https://youtu.be/Hh K-p2 h XNn U. 展开更多
关键词 Aerial robotics epipolar geometry multi-target tracking pose estimation unmanned aircraft systems vision-based flight
下载PDF
GREENSKY:A fair energy-aware optimization model for UAVs in next-generation wireless networks
4
作者 Pratik Thantharate Anurag Thantharate Atul Kulkarni 《Green Energy and Intelligent Transportation》 2024年第1期16-24,共9页
Unmanned Aerial Vehicles(UAVs)offer a strategic solution to address the increasing demand for cellular connectivity in rural,remote,and disaster-hit regions lacking traditional infrastructure.However,UAVs’limited onb... Unmanned Aerial Vehicles(UAVs)offer a strategic solution to address the increasing demand for cellular connectivity in rural,remote,and disaster-hit regions lacking traditional infrastructure.However,UAVs’limited onboard energy storage necessitates optimized,energy-efficient communication strategies and intelligent energy expenditure to maximize productivity.This work proposes a novel joint optimization model to coordinate charging operations across multiple UAVs functioning as aerial base stations.The model optimizes charging station assignments and trajectories to maximize UAV flight time and minimize overall energy expenditure.By leveraging both static ground base stations and mobile supercharging stations for opportunistic charging while considering battery chemistry constraints,the mixed integer linear programming approach reduces energy usage by 9.1%versus conventional greedy heuristics.The key results provide insights into separating charging strategies based on UAV mobility patterns,fully utilizing all available infrastructure through balanced distribution,and strategically leveraging existing base stations before deploying dedicated charging assets.Compared to myopic localized decisions,the globally optimized solution extends battery life and enhances productivity.Overall,this work marks a significant advance in UAV energy management by consolidating multiple improvements within a unified coordination framework focused on joint charging optimization across UAV fleets.The model lays a critical foundation for energy-efficient aerial network deployments to serve the connectivity needs of the future. 展开更多
关键词 5G new radio Unmanned aerial vehicles(UAV) UAV battery life Energy efficiency Unmanned aircraft systems(UAS)UAV scheduling Cellular networks Linear programming Joint UAV charging optimization
原文传递
Experimental evaluation of mechanical compression of lattice trusses made with Ti6Al4V for aerospace use
5
作者 Carlo Giovanni FERRO Sara VARETTI Paolo MAGGIORE 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第5期520-532,共13页
Lattice structures are three-dimensional structures composed of repeated geometrical shapes with multiple interconnected nodes,providing high strength-to-weight ratios,customizable properties,and efficient use of mate... Lattice structures are three-dimensional structures composed of repeated geometrical shapes with multiple interconnected nodes,providing high strength-to-weight ratios,customizable properties,and efficient use of materials.A smart use of materials leads to reduced fuel consumption and lower operating costs,making them highly desirable for aircraft manufacturers.Furthermore,the customizable properties of lattice structures allow for tailoring to specific design requirements,leading to improved performance and safety for aircraft.These advantages make lattice structures an important focus for research and development in the aviation industry.This paper presents an experimental evaluation of the mechanical compression properties of lattice trusses made with Ti6Al4V,designed for use in an anti-ice system.The truss structures were manufactured using additive manufacturing techniques and tested under compressive loads to determine mechanical properties.Results showed that lattice trusses exhibited high levels of compressive strength,making them suitable for use in applications where mechanical resistance and durability are critical,such as in anti-ice systems.We also highlight the potential of additive manufacturing techniques for the fabrication of lattice trusses with tailored mechanical properties.The study provides valuable insights into the mechanical behavior of Ti6Al4V lattice trusses and their potential applications in anti-ice systems,as well as other areas where high strength-to-weight ratios are required.The results of this research contribute to the development of lightweight,efficient,and durable anti-ice systems for use in aviation and other industries. 展开更多
关键词 Additive Manufacturing(AM) Selective Laser Sintering(SLM) Anti ice systems Lattice structures aircraft on board systems Design of Experiments(DOE)
原文传递
UAVs as remote sensing platforms in plant ecology:review of applications and challenges 被引量:2
6
作者 Zhongyu Sun Xiaonian Wang +3 位作者 Zhihui Wang Long Yang Yichun Xie Yuhui Huang 《Journal of Plant Ecology》 SCIE CSCD 2021年第6期1003-1023,共21页
Aims Unmanned aerial vehicles(UAVs),i.e.drones,have recently emerged as cost-effective and flexible tools for acquiring remote sensing data with fine spatial and temporal resolution.It provides a new method and opport... Aims Unmanned aerial vehicles(UAVs),i.e.drones,have recently emerged as cost-effective and flexible tools for acquiring remote sensing data with fine spatial and temporal resolution.It provides a new method and opportunity for plant ecologists to study issues from individual to regional scales.However,as a new method,UAVs remote sensing applications in plant ecology are still challenged.The needs of plant ecology research and the application development of UAVs remote sensing should be better integrated.Methods This report provides a comprehensive review of UAV-based remote sensing applications in plant ecology to synthesize prospects of applying drones to advance plant ecology research.Important Findings Of the 400 references,59%were published in remote sensing journals rather than in plant ecology journals,reflecting a substantial gap between the interests of remote sensing experts and plant ecologists.Most of the studies focused on UAV remote sensing’s technical aspects,such as data processing and remote sensing inversion,with little attention on answering ecological questions.There were 61%of studies involved community-scale research.RGB and multispectral cameras were the most used sensors(75%).More ecologically meaningful parameters can be extracted from UAV data to better understand the canopy surface irregularity and community heterogeneity,identify geometrical characteristics of canopy gaps and construct canopy chemical assemblies from living vegetation volumes.More cooperation between plant ecologists and remote sensing experts is needed to promote UAV remote sensing in advancing plant ecology research. 展开更多
关键词 UAVS DRONES unmanned aircraft systems(UASs) plant ecology species identification community function
原文传递
Measuring disturbance at swift breeding colonies due to the visual aspects of a drone:a quasi-experiment study
7
作者 Geison P.MESQUITA JoséD.RODRÍGUEZ-TEIJEIRO +1 位作者 Serge A.WICH Margarita MULERO-PÁZMÁNY 《Current Zoology》 SCIE CAS CSCD 2021年第2期157-163,共7页
There is a growing body of research indicating that drones can disturb animals.However,it is usu-ally unclear whether the disturbance is due to visual or auditory cues.Here,we examined the effect of drone flights on t... There is a growing body of research indicating that drones can disturb animals.However,it is usu-ally unclear whether the disturbance is due to visual or auditory cues.Here,we examined the effect of drone flights on the behavior of great dusky swifts Cypseloides senex and white collared swifts Streptoprocne zonaris in 2 breeding sites where drone noise was obscured by environmental noise from waterfalls and any disturbance must be largely visual.We performed 12 experimental flights with a multirotor drone at different vertical,horizontal,and diagonal distances from the colonies.From all flights,17%caused<1%of birds to temporarily a bandon the breeding site,50%caused half to abandon,and 33%caused more than half to abandon.We found that the diagonal distance explained 98.9%of the variability of the disturbance percentage and while at distances>50 m the disturbance percentage does not exceed 20%,at<40 m the disturbance percentage increase to>60%.We recommend that flights with a multirotor drone during the breeding period should be con-ducted at a distance of>50 m and that recreational flights should be discouraged or conducted at larger distances(e.g.100 m)in nesting birds areas such as waterfalls,canyons,and caves. 展开更多
关键词 Cypseloides senex DISTURBANCE DRONES multirotors Streptoprocne zonaris unmanned aircraft systems
原文传递
Assessing the performance of YOLOv5 algorithm for detecting volunteer cotton plants in corn fields at three different growth stages
8
作者 Pappu Kumar Yadav J.Alex Thomasson +9 位作者 Stephen W.Searcy Robert G.Hardin Ulisses Braga-Neto Sorin C.Popescu Daniel E.Martin Roberto Rodriguez Karem Meza Juan Enciso Jorge Solórzano Diaz Tianyi Wang 《Artificial Intelligence in Agriculture》 2022年第1期292-303,共12页
The feral or volunteer cotton(VC)plants when reach the pinhead squaring phase(5–6 leaf stage)can act as hosts for the boll weevil(Anthonomus grandis L.)pests.The Texas Boll Weevil Eradication Program(TBWEP)employs pe... The feral or volunteer cotton(VC)plants when reach the pinhead squaring phase(5–6 leaf stage)can act as hosts for the boll weevil(Anthonomus grandis L.)pests.The Texas Boll Weevil Eradication Program(TBWEP)employs people to locate and eliminate VC plants growing by the side of roads or fields with rotation crops but the ones growing in the middle of fields remain undetected.In this paper,we demonstrate the application of computer vision(CV)algorithm based on You Only Look Once version 5(YOLOv5)for detecting VC plants growing in the middle of corn fields at three different growth stages(V3,V6 and VT)using unmanned aircraft systems(UAS)remote sensing imagery.All the four variants of YOLOv5(s,m,l,and x)were used and their performances were compared based on classification accuracy,mean average precision(mAP)and F1-score.It was found that YOLOv5s could detect VC plants with maximum classification accuracy of 98%and mAP of 96.3%at V6 stage of corn while YOLOv5s and YOLOv5m resulted in the lowest classification accuracy of 85%and YOLOv5m and YOLOv5l had the least mAP of 86.5%at VT stage on images of size 416×416 pixels.The developed CV algorithm has the potential to effectively detect and locate VC plants growing in the middle of corn fields as well as expedite the management aspects of TBWEP. 展开更多
关键词 Boll weevil Volunteer cotton plant Computer vision YOLOv5 Unmanned aircraft systems(UAS) Remote sensing
原文传递
Transient aeroelastic responses and flutter analysis of a variable-span wing during the morphing process 被引量:10
9
作者 Huang Ren Qiu Zhiping 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2013年第6期1430-1438,共9页
To investigate the transient aeroelastic responses and flutter characteristics of a variablespan wing during the morphing process,a novel frst-order state-space aeroelastic model is proposed.The time-varying structura... To investigate the transient aeroelastic responses and flutter characteristics of a variablespan wing during the morphing process,a novel frst-order state-space aeroelastic model is proposed.The time-varying structural model of the morphing wing is established based on the Euler-Bernoulli beam theory with time-dependent boundary conditions.A nondimensionalization method is used to translate the time-dependent boundary conditions to be time-independent.The time-domain aerodynamic forces are calculated by the reduced-order unsteady vortex lattice method.The morphing parameters,i.e.,wing span length and morphing speed,are of particular interest for understanding the fundamental aeroelastic behavior of variable-span wings.A test case is proposed and numerical results indicate that the flutter characteristics are sensitive to both of the two morphing parameters.It could be noticed that the aeroelastic characteristics during the wing extracting process are more serious than those during the extending process at the same morphing speed by transient aeroelastic response analysis.In addition,a faster morphing process can get better aeroelastic performance while the mechanism comlexity will arise. 展开更多
关键词 Galerkin methods Morphing aircraft Time-varying systems Transient aeroelastic Unsteady vortex lattice method Variable-span wing
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部