Aircraft designers strive to achieve optimal weight-reliability tradeoffs while designing an aircraft. Since aircraft wing skins account for more than fifty percent of their structural weight, aircraft wings must be d...Aircraft designers strive to achieve optimal weight-reliability tradeoffs while designing an aircraft. Since aircraft wing skins account for more than fifty percent of their structural weight, aircraft wings must be designed with utmost care and attention in terms of material types and thickness configurations. In particular, the selection of thickness at each location of the aircraft wing skin is the most consequential task for aircraft designers. To accomplish this, we present discrete mathematical programming models to obtain optimal thicknesses either to minimize weight or to maximize reliability. We present theoretical results for the decomposition of these discrete mathematical programming models to reduce computer memory requirements and facilitate the use of dynamic programming for design purposes. In particular, a decomposed version of the weight minimization problem is solved for an aircraft wing with thirty locations (or panels) and fourteen thickness choices for each location to yield an optimal minimum weight design.展开更多
在全球变暖的背景下,高温热浪事件显著增多且对飞机性能的影响日益显著。利用机场气象站点观测数据、通用地球系统模式版本2(CESM2,community earth system model version 2)和波音性能软件(BPS,Boeing performance software)分析了中国...在全球变暖的背景下,高温热浪事件显著增多且对飞机性能的影响日益显著。利用机场气象站点观测数据、通用地球系统模式版本2(CESM2,community earth system model version 2)和波音性能软件(BPS,Boeing performance software)分析了中国1973—2022年期间机场高温热浪发生的趋势,并定量评估了未来高温热浪事件对B737-800飞机最大起飞重量和起飞滑跑距离的影响。结果表明,1973—2022年期间平原机场纬度越低,高温日数上升趋势越明显,高温热浪事件在1989年后显著增多,而高原机场在此期间未发生高温热浪事件;2096—2100年期间4个机场的飞机最大起飞重量全部受到高温影响的限制,相较于2010—2014年减载天数明显增多,其中高原机场受影响程度最大;当飞机满载飞行时,飞机在3个平原机场的起飞滑跑距离随温度升高并呈非线性变化,温度越高,增长趋势越明显。该结论可为未来改造或新建机场跑道及航空公司制定飞行计划提供重要的参考依据。展开更多
The evaluation indexes system of aircraft survivability is constructed for the first time from three aspects: susceptibility, vulnerability and combat resilience; the bargaining weight method is proposed to determine...The evaluation indexes system of aircraft survivability is constructed for the first time from three aspects: susceptibility, vulnerability and combat resilience; the bargaining weight method is proposed to determine the weights of the indexes and evaluate aircraft survivability. The bargaining weight method brings different opinions into accord under the constraint of minimum loss, it can overcome the partial subjectivity in determining weights and evaluation, and has objectivity. The example testifies rationality and feasibility of the evaluation system.展开更多
A light and reliable aircraft has been the major goal of aircraft designers. It is imperative to design the aircraft wing skins as efficiently as possible since the wing skins comprise more than fifty percent of the s...A light and reliable aircraft has been the major goal of aircraft designers. It is imperative to design the aircraft wing skins as efficiently as possible since the wing skins comprise more than fifty percent of the structural weight of the aircraft wing. The aircraft wing skin consists of many different types of material and thickness configurations at various locations. Selecting a thickness for each location is perhaps the most significant design task. In this paper, we formulate discrete mathematical programming models to determine the optimal thicknesses for three different criteria: maximize reliability, minimize weight, and achieve a trade-off between maximizing reliability and minimizing weight. These three model formulations are generalized discrete resource-allocation problems, which lend themselves well to the dynamic programming approach. Consequently, we use the dynamic programming method to solve these model formulations. To illustrate our approach, an example is solved in which dynamic programming yields a minimum weight design as well as a trade-off curve for weight versus reliability for an aircraft wing with thirty locations (or panels) and fourteen thickness choices for each location.展开更多
文摘Aircraft designers strive to achieve optimal weight-reliability tradeoffs while designing an aircraft. Since aircraft wing skins account for more than fifty percent of their structural weight, aircraft wings must be designed with utmost care and attention in terms of material types and thickness configurations. In particular, the selection of thickness at each location of the aircraft wing skin is the most consequential task for aircraft designers. To accomplish this, we present discrete mathematical programming models to obtain optimal thicknesses either to minimize weight or to maximize reliability. We present theoretical results for the decomposition of these discrete mathematical programming models to reduce computer memory requirements and facilitate the use of dynamic programming for design purposes. In particular, a decomposed version of the weight minimization problem is solved for an aircraft wing with thirty locations (or panels) and fourteen thickness choices for each location to yield an optimal minimum weight design.
文摘在全球变暖的背景下,高温热浪事件显著增多且对飞机性能的影响日益显著。利用机场气象站点观测数据、通用地球系统模式版本2(CESM2,community earth system model version 2)和波音性能软件(BPS,Boeing performance software)分析了中国1973—2022年期间机场高温热浪发生的趋势,并定量评估了未来高温热浪事件对B737-800飞机最大起飞重量和起飞滑跑距离的影响。结果表明,1973—2022年期间平原机场纬度越低,高温日数上升趋势越明显,高温热浪事件在1989年后显著增多,而高原机场在此期间未发生高温热浪事件;2096—2100年期间4个机场的飞机最大起飞重量全部受到高温影响的限制,相较于2010—2014年减载天数明显增多,其中高原机场受影响程度最大;当飞机满载飞行时,飞机在3个平原机场的起飞滑跑距离随温度升高并呈非线性变化,温度越高,增长趋势越明显。该结论可为未来改造或新建机场跑道及航空公司制定飞行计划提供重要的参考依据。
文摘The evaluation indexes system of aircraft survivability is constructed for the first time from three aspects: susceptibility, vulnerability and combat resilience; the bargaining weight method is proposed to determine the weights of the indexes and evaluate aircraft survivability. The bargaining weight method brings different opinions into accord under the constraint of minimum loss, it can overcome the partial subjectivity in determining weights and evaluation, and has objectivity. The example testifies rationality and feasibility of the evaluation system.
文摘A light and reliable aircraft has been the major goal of aircraft designers. It is imperative to design the aircraft wing skins as efficiently as possible since the wing skins comprise more than fifty percent of the structural weight of the aircraft wing. The aircraft wing skin consists of many different types of material and thickness configurations at various locations. Selecting a thickness for each location is perhaps the most significant design task. In this paper, we formulate discrete mathematical programming models to determine the optimal thicknesses for three different criteria: maximize reliability, minimize weight, and achieve a trade-off between maximizing reliability and minimizing weight. These three model formulations are generalized discrete resource-allocation problems, which lend themselves well to the dynamic programming approach. Consequently, we use the dynamic programming method to solve these model formulations. To illustrate our approach, an example is solved in which dynamic programming yields a minimum weight design as well as a trade-off curve for weight versus reliability for an aircraft wing with thirty locations (or panels) and fourteen thickness choices for each location.