Here,we introduce a partitioned design method that is oriented toward airgap harmonic for permanent magnet vernier(PMV)motors.The method proposes the utilization of airgap flux harmonics as an effective bridge between...Here,we introduce a partitioned design method that is oriented toward airgap harmonic for permanent magnet vernier(PMV)motors.The method proposes the utilization of airgap flux harmonics as an effective bridge between the torque design region and the torque performances.To illustrate the efficacy of this method,a partitioned design PMV motor is presented and compared with the initial design.Firstly,the torque design region of the rotor is artfully divided into the torque enhancement region and ripple reduction region.Meanwhile,the main harmonics that generate output torque are chosen and enhanced,optimization.Moreover,the harmonics that generate torque ripple are selected and reduced based on torque harmonics optimization.Finally,the functions of the partitioned PMV motor torque are assessed based on the finite element method.By the purposeful design of these two regions,the output torque is strengthened while torque ripple is inhibited effectively,verifying the effectiveness and reasonability of the proposed design method.展开更多
The bearingless induction motor, which combines the inductionmotor and magnetic bearing is a strongly coupled complicatednonlinear system; the decoupling control of the electromag- net toqueand readial levitation forc...The bearingless induction motor, which combines the inductionmotor and magnetic bearing is a strongly coupled complicatednonlinear system; the decoupling control of the electromag- net toqueand readial levitation force is the base of the stable operation ofthe benaringless motor. In this paper, the air-gap motor fluxoriented vector control is proposed to realize the decoupling controlof this nonlinear system even in the transient case based on thelevitation principle. Simulations show the stable suspension and goodperformance of the proposed algorithm.展开更多
In general, it is important to operate the; airgap length uniformly for improving the system efficiency independent of the flatness of the reaction plate in a railway propulsion system by a linear induction motor (LI...In general, it is important to operate the; airgap length uniformly for improving the system efficiency independent of the flatness of the reaction plate in a railway propulsion system by a linear induction motor (LIM). And it is possible to operate the LIM propulsion system efficiently without a change of the LIM capacity through the airgap length control on the sloped rail. So, in this research, the authors introduce an airgap control system to control the airgap length which depends on the flatness of the secondary reaction plate when the LIM is operated, and design a rotary small-scaled LIM and its airgap control system before manufacturing the real system. Then, the authors analyze some characteristics of the LIM (thrust and normal force, input current, efficiency and power factor), and through the LIM control modeling, the authors finally analyze an effect of the airgap-length control of the LIM by the airgap control system.展开更多
在定子永磁型磁场调制(stator-permanent-magnet field modulated,S-FMPM)电机的设计基础上,引入磁场补偿设计,以期改善磁场调制效应,为实现电机转矩性能提升提供可能。基于气隙磁场调制理论,建立S-FMPM电机的调制函数,并展现磁场调制过...在定子永磁型磁场调制(stator-permanent-magnet field modulated,S-FMPM)电机的设计基础上,引入磁场补偿设计,以期改善磁场调制效应,为实现电机转矩性能提升提供可能。基于气隙磁场调制理论,建立S-FMPM电机的调制函数,并展现磁场调制过程,确定主要气隙谐波参与电机转矩性能研究。研究过程中,采用转子分区设计形成双气隙电机,使气隙磁场获得一定的补偿效果。接着,探讨双气隙电机的磁势分配规律,并基于此验证磁势利用效果的改善和电机转矩性能的提升;进一步,为改善该电机的磁场补偿效果,定义了体现磁势利用效果的谐波因子和反映转矩补偿效果的转矩补偿因子,分别作为优化目标,并引入分层优化策略对电机进行优化。最后,为了验证电机设计和优化分析的有效性,对电机电磁性能进行评估与分析,制造样机并进行实验,验证电机及其优化设计的合理性和有效性。展开更多
基金supported in part by the Natural Science Foundation of China under Grant 51991385,Grant 52177046。
文摘Here,we introduce a partitioned design method that is oriented toward airgap harmonic for permanent magnet vernier(PMV)motors.The method proposes the utilization of airgap flux harmonics as an effective bridge between the torque design region and the torque performances.To illustrate the efficacy of this method,a partitioned design PMV motor is presented and compared with the initial design.Firstly,the torque design region of the rotor is artfully divided into the torque enhancement region and ripple reduction region.Meanwhile,the main harmonics that generate output torque are chosen and enhanced,optimization.Moreover,the harmonics that generate torque ripple are selected and reduced based on torque harmonics optimization.Finally,the functions of the partitioned PMV motor torque are assessed based on the finite element method.By the purposeful design of these two regions,the output torque is strengthened while torque ripple is inhibited effectively,verifying the effectiveness and reasonability of the proposed design method.
文摘The bearingless induction motor, which combines the inductionmotor and magnetic bearing is a strongly coupled complicatednonlinear system; the decoupling control of the electromag- net toqueand readial levitation force is the base of the stable operation ofthe benaringless motor. In this paper, the air-gap motor fluxoriented vector control is proposed to realize the decoupling controlof this nonlinear system even in the transient case based on thelevitation principle. Simulations show the stable suspension and goodperformance of the proposed algorithm.
文摘In general, it is important to operate the; airgap length uniformly for improving the system efficiency independent of the flatness of the reaction plate in a railway propulsion system by a linear induction motor (LIM). And it is possible to operate the LIM propulsion system efficiently without a change of the LIM capacity through the airgap length control on the sloped rail. So, in this research, the authors introduce an airgap control system to control the airgap length which depends on the flatness of the secondary reaction plate when the LIM is operated, and design a rotary small-scaled LIM and its airgap control system before manufacturing the real system. Then, the authors analyze some characteristics of the LIM (thrust and normal force, input current, efficiency and power factor), and through the LIM control modeling, the authors finally analyze an effect of the airgap-length control of the LIM by the airgap control system.
文摘在定子永磁型磁场调制(stator-permanent-magnet field modulated,S-FMPM)电机的设计基础上,引入磁场补偿设计,以期改善磁场调制效应,为实现电机转矩性能提升提供可能。基于气隙磁场调制理论,建立S-FMPM电机的调制函数,并展现磁场调制过程,确定主要气隙谐波参与电机转矩性能研究。研究过程中,采用转子分区设计形成双气隙电机,使气隙磁场获得一定的补偿效果。接着,探讨双气隙电机的磁势分配规律,并基于此验证磁势利用效果的改善和电机转矩性能的提升;进一步,为改善该电机的磁场补偿效果,定义了体现磁势利用效果的谐波因子和反映转矩补偿效果的转矩补偿因子,分别作为优化目标,并引入分层优化策略对电机进行优化。最后,为了验证电机设计和优化分析的有效性,对电机电磁性能进行评估与分析,制造样机并进行实验,验证电机及其优化设计的合理性和有效性。