期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Structural Parameter Analyses on Rotor Airloads with New Type Blade-Tip Based on CFD/CSD Coupling Method
1
作者 Wang Junyi Zhao Qijun Ma Li 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2016年第6期-,共9页
For accurate aeroelastic analysis,the unsteady rotor flowfield is solved by computational fluid dynamics(CFD)module based on RANS/Euler equations and moving-embedded grid system,while computational structural dynamics... For accurate aeroelastic analysis,the unsteady rotor flowfield is solved by computational fluid dynamics(CFD)module based on RANS/Euler equations and moving-embedded grid system,while computational structural dynamics(CSD)module is introduced to handle blade flexibility.In CFD module,dual time-stepping algorithm is employed in temporal discretization,Jameson two-order central difference(JST)scheme is adopted in spatial discretization and B-L turbulent model is used to illustrate the viscous effect.The CSD module is developed based on Hamilton′s variational principles and moderate deflection beam theory.Grid deformation is implemented using algebraic method through coordinate transformations to achieve deflections with high quality and efficiency.A CFD/CSD loose coupling strategy is developed to transfer information between rotor flowfield and blade structure.The CFD and the CSD modules are verified seperately.Then the CFD/CSD loose coupling is adopted in airloads prediction of UH-60A rotor under high speed forward flight condition.The calculated results agree well with test data.Finally,effects of torsional stiffness properties on airloads of rotors with different tip swept angles(from 10° forward to 30° backward)are investigated.The results are evaluated through pressure distribution and airloads variation,and some meaningful conclusions are drawn the moderated shock wave strength and pressure gradient caused by varied tip swept angle and structural properties. 展开更多
关键词 ROTOR airloads structural parameter computational fluid dynamics(CFD) computational structural dynamics(CSD) loose coupling method
下载PDF
APPLICATION OF HARMONIC ANALYSIS METHOD TO RESEARCH ON ROTOR AIRLOADS
2
《Chinese Journal of Aeronautics》 SCIE EI CAS 1988年第2期63-70,共8页
According to the rotor vortex theory,the rotor circulation and the rotor induced velocity are developed into Fourier series.The circulation distribution along blade spanwise is expressed in terms of segment-by-segment... According to the rotor vortex theory,the rotor circulation and the rotor induced velocity are developed into Fourier series.The circulation distribution along blade spanwise is expressed in terms of segment-by-segment linear functions.In consequence the induced velocity equations and the circulation equations are derived.The engineering application of the rotor vortex theory is provided.Then the induced velocity and its harmonic components are obtained to provide a quantitative basis for the vortex model.For calculating each harmonic component of the induced velocity a simplified method is put forward which considers the effects of each order circulation with neglecting those of higher order.The method saves the computer time and is of significant benefit. 展开更多
关键词 APPLICATION OF HARMONIC ANALYSIS METHOD TO RESEARCH ON ROTOR airloads WANG
下载PDF
Rotor Airload and Acoustics Prediction Based on CFD/CSD Coupling Method 被引量:2
3
作者 Wang Liangquan Xu Guohua Shi Yongjie 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2018年第2期343-352,共10页
An advanced airload and noise prediction method based on computational fluid dynamics/computational structural dynamics(CFD/CSD)coupling for helicopter rotor has been developed in this paper.In the present method,Navi... An advanced airload and noise prediction method based on computational fluid dynamics/computational structural dynamics(CFD/CSD)coupling for helicopter rotor has been developed in this paper.In the present method,Navier-Stokes equation is applied as the governing equation,and a moving overset grid system is generated in order to account for the blade motions in rotation,flapping and pitching.The blade structural analysis is based on 14-DOF Euler beam model,and the finite element discretization is conducted on Hamilton′s variational principle and moderate deflection theory.Aerodynamic noise is calculated by Farassat 1 Aformula derived from FW-H equation.Using the developed method,numerical example of UH-60 Ais performed for aeroelastic loads calculation in a low-speed forward flight,and the calculated results are compared with both those from isolated CFD method and available experimental data.Then,rotor noise is emphatically calculated by CFD/CSD coupling method and compared with the isolated CFD method.The results show that the aerodynamic loads calculated from CFD/CSD method are more satisfactory than those from isolated CFD method,and the exclusion of blade structural deformation in rotor noise calculation may cause inaccurate results in low-speed forward flight state. 展开更多
关键词 HELICOPTER ROTOR airload aerodynamic noise COMPUTATIONAL fluid DYNAMICS (CFD) COMPUTATIONAL structural DYNAMICS (CSD)
下载PDF
Numerical study on flow control of ship airwake and rotor airload during helicopter shipboard landing 被引量:9
4
作者 Yongjie SHI Xiang HE +1 位作者 Yi XU Guohua XU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2019年第2期324-336,共13页
A numerical study on flow control of ship airwake during shipboard landing is carried out to address the effect of flow control devices on helicopter rotor airload. The in-house Reynolds Averaged Navier-Stokes(RANS) b... A numerical study on flow control of ship airwake during shipboard landing is carried out to address the effect of flow control devices on helicopter rotor airload. The in-house Reynolds Averaged Navier-Stokes(RANS) based solver Rotorcraft AeroDynamics and Aeroacoustics Solver(RADAS), with combination of momentum source approach is employed to conduct the helicopter shipboard landing simulation. The control effects of three aerodynamic modifications of ship superstructure, i.e. ramp, notch and flap, in different Wind-Over-Deck(WOD) conditions are discussed.From the steady simulation results, the effect of spatial variation of ship airwake on rotor airloads is concluded. The aerodynamic modifications reduce the strength of shedding vortex and increase rotor normal force through delaying and relieving flow separation, and therefore are beneficial to alleviate the limitation of control inputs. By contrast, the perturbation of unsteady ship airwake can cause the serious oscillation of rotor forces during shipboard landing. The unsteady simulations show that the turbulence intensity of ship airwake and oscillatory rotor airloading, represented by Root-Mean-Square(RMS) loading, can be remarkably reduced by the ramp and notch modifications, while the flap modification has adverse effect. It means that flow control devices have large potential benefits to alleviate the pilot's workload and improve the shipboard landing safety, but they should be well designed to avoid the introduction of more vortex, which leads to increase in disturbance of flow field. 展开更多
关键词 Flow control HELICOPTER ROTOR airload SHIP airwake SHIPBOARD LANDING
原文传递
A coupling VWM/CFD/CSD method for rotor airload prediction 被引量:5
5
作者 Shi Yongjie Xu Yi +1 位作者 Xu Guohua Wei Peng 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2017年第1期204-215,共12页
A coupling fluid-structure method with a combination of viscous wake model(VWM),computational fluid dynamics(CFD) and comprehensive structural dynamics(CSD) modules is developed in this paper for rotor unsteady ... A coupling fluid-structure method with a combination of viscous wake model(VWM),computational fluid dynamics(CFD) and comprehensive structural dynamics(CSD) modules is developed in this paper for rotor unsteady airload prediction. The hybrid VWM/CFD solver is employed to model the nonlinear aerodynamic phenomena and complicated rotor wake dynamics;the moderate deflection beam theory is implemented to predict the blade structural deformation; the loose coupling strategy based on the ‘delt method' is used to couple the fluid and structure solvers.Several cases of Helishape 7A rotor are performed first to investigate the effect of elastic deformation on airloads. Then, two challenging forward flight conditions of UH-60 A helicopter rotor are investigated, and the simulated results of wake geometry, chordwise pressure distribution and sectional normal force show excellent agreement with available test data; a comparison with traditional CFD/CSD method is also presented to illustrate the efficiency of the developed method. 展开更多
关键词 Airload CFD/CSD coupling Navier-Stokes equations ROTOR Viscous wake model
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部