期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Glass-compatible and self-powered temperature alarm system by temperature-responsive organic manganese halides via backward energy transfer process
1
作者 Pengfei Xia Fan Liu +4 位作者 Yuru Duan Xuefang Hu Changgui Lu Shuhong Xu Chunlei Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第3期188-194,I0006,共8页
A pioneering glass-compatible transparent temperature alarm system self-powered by luminescent solar concentrators(LSCs) is reported.Single green-emitted organic manganese halides(OMHs) of PEA_(2)MnBr_(2)I_(2),which h... A pioneering glass-compatible transparent temperature alarm system self-powered by luminescent solar concentrators(LSCs) is reported.Single green-emitted organic manganese halides(OMHs) of PEA_(2)MnBr_(2)I_(2),which has a unique temperature-dependent backward energy transfer process from selftrapped state to^(4)T_(1)energy level of Mn,is used for triggering the temperature alarm.The LSC with redemitted CsPbI_(3)perovskite-polymer composite films on the glass substrate is used for power supply.The spectrally separated nature between the green-emitted OMHs for temperature alarm and red-emitted CsPbI3in LSC for power supply allows for probing the signal light of temperature-responsive OMHs without the interference of LSCs,making it possible to calibrate the temperature visually just by a self-powered brightness detection circuit with LED indicators.Taking advantage of LSC without hot spot effects plaguing the solar cells,as-prepared temperature alarm system can operate well on both sunny and cloudy day. 展开更多
关键词 Luminescent solar concentrators Organic manganese halides Perovskite-polymer compositefilms Self-powered temperature alarm system Backward energy transfer process
下载PDF
Hydrophobic,Hemostatic and Durable Nanofiber Composites with a Screw‑Like Surface Architecture for Multifunctional Sensing Electronics
2
作者 Wei Xiao Yutong Chen +3 位作者 Gaoxing Pan Jun Yan Jin Zhang Jiefeng Gao 《Advanced Fiber Materials》 SCIE EI CAS 2023年第6期2040-2054,共15页
MXene-decorated textile composites have attracted tremendous attention,due to their possible applications in wearable sensing electronics.However,the easy oxidation,low strain sensitivity and poor water-proof performa... MXene-decorated textile composites have attracted tremendous attention,due to their possible applications in wearable sensing electronics.However,the easy oxidation,low strain sensitivity and poor water-proof performance restrict the applications of MXene-based smart textiles.Here,we developed a flexible and hydrophobic polymer nanofibrous composite with a screw-like structure by assembling MXene nanosheets onto a prestretched polyurethane(PU)nanofiber surface and subsequent fluorination treatment.The thin hydrophobic fluorosilane layer can greatly prevent the MXene shell from being oxidized and simultaneously endow the nanofiber composite with good hemostatic performance.The wrinkled MXene shell with the screw-like structure enhances the sensitivity of MXene@PU nanofiber composite(HMPU)toward strain,and the hydrophobic strain sensor exhibits a high gauge factor(324.4 in the strain range of 85–100%),and can detect different human movements.In virtue of its excellent water-proof performance,HMPU can function normally in corrosive and underwater conditions.In addition,the resistance of HMPU exhibits a negative temperature coefficient;thus,HMPU shows potential for monitoring temperature and providing a temperature alarm.The multifunctional HMPU shows broad application prospects in smart wearable electronics. 展开更多
关键词 Nanofibrous composite MXene nanosheets Strain sensor temperature alarm
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部