In the current work,inclined magnetic field,thermal radiation,and the Cattaneo-Christov heat flux are taken into account as we analyze the impact of chemical reaction on magneto-hydrodynamic Casson nanofluid flow on a...In the current work,inclined magnetic field,thermal radiation,and the Cattaneo-Christov heat flux are taken into account as we analyze the impact of chemical reaction on magneto-hydrodynamic Casson nanofluid flow on a stretching sheet.Modified Buongiorno’s nanofluid model has been used to model the flow governing equations.The stretching surface is embedded in a porousmedium.By using similarity transformations,the nonlinear partial differential equations are transformed into a set of dimensionless ordinary differential equations.The numerical solution of transformed dimensionless equations is achieved by applying the shooting procedure together with Rung-Kutta 4th-order method employing MATLAB.The impact of significant parameters on the velocity profile f(ζ),temperature distributionθ(ζ),concentration profileϕ(ζ),skin friction coefficient(Cf),Nusselt number(Nux)and Sherwood number(Shx)are analyzed and displayed in graphical and tabular formats.With an increase in Casson fluid 0.5<β<2,the motion of the Casson fluid decelerates whereas the temperature profile increases.As the thermal relation factor expands 0.1<γ1<0.4,the temperature reduces,and consequently thermal boundary layer shrinks.Additionally,by raising the level of thermal radiation 1<Rd<7,the temperature profile significantly improves,and an abrupt expansion has also been observed in the associated thermal boundary with raise thermal radiation strength.It was observed that higher permeability 0<K<4 hinders the acceleration of Casson fluid.Higher Brownian motion levels 0.2<Nb<0.6 correspond to lower levels of the Casson fluid concentration profile.Moreover,it is observed that chemical reaction 0.2<γ2<0.5 has an inverse relation with the concentration level of Casson fluid.The current model’s significant uses include heat energy enhancement,petroleum recovery,energy devices,food manufacturing processes,and cooling device adjustment,among others.Furthermore,present outcomes have been found in great agreementwith already publishedwork.展开更多
This paper presents the study of convective heat and mass transfer characteristics of an incompressible MHD visco-elastic fluid flow immersed in a porous medium over a stretching sheet with chemical reaction and therm...This paper presents the study of convective heat and mass transfer characteristics of an incompressible MHD visco-elastic fluid flow immersed in a porous medium over a stretching sheet with chemical reaction and thermal stratification effects. The resultant governing boundary layer equations are highly non-linear and coupled form of partial differential equations, and they have been solved by using fourth order Runge-Kutta integration scheme with Newton Raphson shooting method. Numerical computations are carried out for the non-dimensional physical parameters. Here a numerical has been carried out to study the effect of different physical parameters such as visco-elasticity, permeability of the porous medium, magnetic field, Grashof number, Schmidt number, heat source parameter and chemical reaction parameter on the flow, heat and mass transfer characteristics.展开更多
The present article deals with thermally stratified stagnation-point flow saturated in porous medium on surface of variable thickness along with more convincing and reliable surface condition termed as melting heat tr...The present article deals with thermally stratified stagnation-point flow saturated in porous medium on surface of variable thickness along with more convincing and reliable surface condition termed as melting heat transfer.Homogeneous–heterogeneous reaction and radiative effects have been further taken into account to reconnoiterproperties of heat transfer.Melting heat transfer and phenomenon of homogeneous–heterogeneous reaction have engrossed widespread utilization in purification of metals,welding process,electroslag melting,biochemical systems,catalysis and several industrial developments.Suitable transformations are utilized to attain a scheme of ordinary differential equations possessing exceedingly nonlinear nature.Homotopic process is employed to develop convergent solutions of the resulting problem.Discussion regarding velocity,thermal field and concentration distribution for several involved parameters is pivotal part.Graphical behaviors of skin friction coefficient and Nusselt number are also portrayed.Concentration of the reactants is found to depreciate as a result of strength of both heterogeneous and homogeneous reaction parameters.With existence of melting phenomenon,declining attitude of fluid temperature is observed for higher radiation parameter.展开更多
The mechanism of the interfacial reaction of Al_2O_3/medium Mn steel containing Nb was studied by means of the observation on the interfacial reaction phenomenon of Al_2O_3/medium Mn steel,and the analyses on the inte...The mechanism of the interfacial reaction of Al_2O_3/medium Mn steel containing Nb was studied by means of the observation on the interfacial reaction phenomenon of Al_2O_3/medium Mn steel,and the analyses on the interracial phases.The results show that when T≥1550℃,the interfacial reac- tion of Al_2O_3/medium Mn steel containing Nb happened.In the medium Mn steel matrix,Nb exists in the form of NbC.NbC are the nucleating base of CO gas bubbles.展开更多
Wittig reactions of benzaldehydes, alkanals, and cycloalkanals as well as of acetophenones are carried out with alkoxycarbonyl methylidenetriphenylphosphoranes in 10 w% aqueous NaOH, where the cinnamates and alkenoate...Wittig reactions of benzaldehydes, alkanals, and cycloalkanals as well as of acetophenones are carried out with alkoxycarbonyl methylidenetriphenylphosphoranes in 10 w% aqueous NaOH, where the cinnamates and alkenoates produced are hydrolysed in situ and the corresponding acids are obtained after mostly simple extractive work-up, often without employing organic solvents. Under the same conditions, benzaldehydes are reacted with alkoxycarbonyl bromomethy-lidenephosphorane to produce 3-arylprop-2-ynoic acids (arylpropiolic acids).展开更多
Replacing platinum for catalyzing hydrogen evolution reaction (HER) in acidic medium remains great chal- lenges. Herein, we prepared few-layered MoS2 by ball milling as an efficient catalyst for HER in acidic medium...Replacing platinum for catalyzing hydrogen evolution reaction (HER) in acidic medium remains great chal- lenges. Herein, we prepared few-layered MoS2 by ball milling as an efficient catalyst for HER in acidic medium, The activity of as-prepared MoS2 had a strong dependence on the ball milling time, Furthermore, Ketjen Black EC 300J was added into the ball-milled MoS2 followed by a second ball milling, and the resultant MoS2/carbon black hybrid material showed a much higher HER activity than MoS2 and carbon black alone. The enhanced activity of the MoS2/carbon black hybrid material was attributed to the increased abundance of catalytic edge sites of MoS) and excellent electrical coupling to the underlving carbon network.展开更多
The problem of magneto-hydro-dynamic (MHD) mass and heat transfer of an oscillatory fluid in two-dimensional viscous, electrically conducting over an infinite vertical permeable moving plate in a saturated porous medi...The problem of magneto-hydro-dynamic (MHD) mass and heat transfer of an oscillatory fluid in two-dimensional viscous, electrically conducting over an infinite vertical permeable moving plate in a saturated porous medium with the presence of a transverse magnetic field and chemical reaction is analytically presented. The governing equations, momentum, energy, and concentration are solved. Various flow parameters effects on velocity, temperature and concentration fields are discussed. It is found that, the fluid velocity increases with increasing both the permeability and chemical reaction parameters. While, it increases with decreasing the magnetic field parameter. Furthermore, the concentration increases with increasing chemical reaction parameters.展开更多
The reaction mechanism of amadori rearrangement in the initial stage of Maillard reaction has been investigated by means of density functional theory calculations in the gaseous phase and aqueous solution.Cyclic ribos...The reaction mechanism of amadori rearrangement in the initial stage of Maillard reaction has been investigated by means of density functional theory calculations in the gaseous phase and aqueous solution.Cyclic ribose and glycine were taken as the model in the amadori rearrangement.Reaction mechanisms have been proposed,and possibility for the formation of different compounds has been evaluated through calculating the relative energy changes for different steps of the reaction by following the total mass balance.The calculations reveal that the amadori rearrangement initialized via the intramolecular rearrangement,transferring one proton from N(3) to O(4) atom.In the next step,the second proton is also transferred from N(3) to O(4) atom,corresponding to the cleavage of C(4)-O(4) bond and the release of one water molecule.Then another proton is transferred from N(3) to C(5) atom via TS3 with the reaction barrier of 58.3 kcal·mol-1 after tunneling the effect correction calculated at the B3LYP/6-31+G(d) level of theory,and this step is rate limiting for the whole catalytic cycle.Ultimately,the product is generated via keto-enolic tautomerization.Present calculation could provide insights into the reaction mechanism of Maillard reaction since experimental evaluation of the role of intermediates in the Maillard reaction is quite complicated.展开更多
Developing high-performance non-precious metal electrocatalysts for oxygen reduction reaction(ORR)is crucial for the commercialization of fuel cells and metal-air batteries.However,doped carbon-based materials only sh...Developing high-performance non-precious metal electrocatalysts for oxygen reduction reaction(ORR)is crucial for the commercialization of fuel cells and metal-air batteries.However,doped carbon-based materials only show good ORR activity in alkaline medium,and become less effective in acidic environment.We believe that an appropriate combination of both ionic and electronic transport path,and well dopant distribution of doped carbon-based materials would help to realize high ORR performance un-der both acidic and alkaline cond让ions.Accordingly,a nitrogen and sulfur co-doped carbon framework with hierarchical through-hole structure is fabricated by morphology-controlled solid-state pyrolysis of poly(aniline-co-2-ami no thiophenol)foam.The uniform high concentrations of nitrogen and sulfur,high intrinsic conductivity,and integrated three dimensional ionic and electronic transfer passageways of the 3D porous structure lead to synergistic effects in catalyzing ORR.As a result,the limiting current density of the carbonized poly(aniline-co-2-aminothiophenol)foam is equivalent to commercial Pt/C in acidic environment,and twice the latter in alkaline medium.展开更多
The effect of Al content(0.035 wt%,0.5 wt%,1 wt%,and 2 wt%)on the composition change of steel and slag as well as inclusion transformation of high manganese steel after it has equilibrated with Ca O-Si O_(2)-Al_(2)O_(...The effect of Al content(0.035 wt%,0.5 wt%,1 wt%,and 2 wt%)on the composition change of steel and slag as well as inclusion transformation of high manganese steel after it has equilibrated with Ca O-Si O_(2)-Al_(2)O_(3)-Mg O slag was studied using the method of slag/steel reaction.The experimental results showed that as the initial content of Al increased from 0.035 wt%to 2 wt%,Al gradually replaced Mn to react with Si O_(2)in slag to avoid the loss of Mn due to the reaction;this process caused both Al_(2)O_(3)in slag and Si in steel to increase while Si O_(2)and Mn O in slag to reduce.In addition,the type of inclusions also evolved as the initial Al content increased.The evolution route of inclusions was Mn O→Mn O-Al_(2)O_(3)-Mg O→Mg O→Mn O-Ca O-Al_(2)O_(3)-Mg O and Mn O-Ca O-Mg O.The shape of inclusions evolved from spherical to irregular,became faceted,and finally transformed to spherical.The average size of inclusions presented a trend that was increasing first and then decreasing.The transformation mechanism of inclusions was explored.As the initial content of Al increased,Mg and Ca were reduced from top slag into molten steel in sequence,which consequently caused the transformation of inclusions.展开更多
The chemical reaction effect on an unsteady magnetohydrodynamic (MHD) flow past a semi-infinite vertical porous plate with viscous dissipation is analyzed. The governing equations of motion, energy, and species are ...The chemical reaction effect on an unsteady magnetohydrodynamic (MHD) flow past a semi-infinite vertical porous plate with viscous dissipation is analyzed. The governing equations of motion, energy, and species are transformed into ordinary differential equations (ODEs) using the time dependent similarity parameter. The resultant ODEs are then solved numerically by a finite element method. The effects of various parameters on the velocity, temperature, and concentration profiles are presented graphically, and the values of the skin-friction, Nusselt number, and Sherwood number for various values of physical parameters are presented through tables.展开更多
Affordable non-precious metal(NPM) catalysts played a vital role in the wide application of polymer electrolyte membrane fuel cells(PEMFC). In current work, a facile vacuum casting reacting method based on vacuum ...Affordable non-precious metal(NPM) catalysts played a vital role in the wide application of polymer electrolyte membrane fuel cells(PEMFC). In current work, a facile vacuum casting reacting method based on vacuum casting was introduced to prepare Fe-N_x-C oxygen reduction reaction(ORR) catalysts with high efficient in acid medium. The catalysts were prepared with ammonium ferrous sulfate hexahydrate(AFS) and 1,10-phenanthroline monohydrate utilizing homemade mesoporous silica template. The heat treatment and its influence on structure and performance were systematically evaluated to achieve superior ORR performance and some clues were found. And 850 ℃ was found to be the best temperature for the first and second pyrolysis. The linear sweep voltammetry(LSV) results showed that there were only 18 mV slightly negative shifts of half-wave potential(E_(1/2)) of the optimal catalyst(749 mV) compared with the commercial Pt/C(20 μg·Pt·cm^-2). Besides, I850 R also showed better electrochemical stability and methanol-tolerance than that of Pt/C. All evidences proved that our vacuum casting reacting strategy and heat treatment process were prospective for the future R&D of high performance Fe-N_x-C ORR catalysts.展开更多
The influence of low-frequency sonolysis on the kinetics bimolecular liquid-phase reactions was studied with due regard for the association (dimers and trimers) of starting reagents. The mathematical modeling of chemi...The influence of low-frequency sonolysis on the kinetics bimolecular liquid-phase reactions was studied with due regard for the association (dimers and trimers) of starting reagents. The mathematical modeling of chemical reactions that were described by nonlinear differential equations is performed. The steady states, the singular points characteristics, the nature of concentration oscillations in the reaction system are described. With increasing frequency and amplitude of low-frequency sonic waves (up to some critical value), we observed the cessation of the reaction. This observation offers an additional tool for controlling reaction rate by the external action of low-frequency vibrations. The conclusions of the work are obtained under certain assumptions. The exact determination of the critical conditions for changes in dynamics is beyond the scope of the problem.展开更多
The unsteady stagnation-point flow of a hybrid nanofluid over a stretching/shrinking sheet embedded in a porous medium with mass transpiration and chemical reactions is considered.The momentum and mass transfer proble...The unsteady stagnation-point flow of a hybrid nanofluid over a stretching/shrinking sheet embedded in a porous medium with mass transpiration and chemical reactions is considered.The momentum and mass transfer problems are combined to form a system of partial differential equations,which is converted into a set of ordinary differential equations via similarity transformation.These ordinary differential equations are solved analytically to obtain the solution for velocity and concentration profiles in exponential and hypergeometric forms,respectively.The concentration profile is obtained for four different cases namely constant wall concentration,uniform mass flux,general power law wall con-centration and general power law mass flux.The effect of different physical parameters such as Darcy number Da^(1-1),mass transpiration parameter V_(C),stretching/shrinking parameter (d),chemical reaction parameter(β)and Schmidt number (Sc)on velocity and concentration profile is examined.Results show that,the axial velocity will decreases as the shrinking sheet parameter increases,regardless of whether the suction or injection case is examined.The concentration decreases with an increase in the shrinking sheet parameter and the chemical reaction rate parameter.展开更多
The sigma meson production in p + ^12C and p A- ^40Ca reactions at the incident energy Ep = 1.5 GeV is investigated within the Quantum Molecular Dynamics model. The simulation results indicate a distinctive A depende...The sigma meson production in p + ^12C and p A- ^40Ca reactions at the incident energy Ep = 1.5 GeV is investigated within the Quantum Molecular Dynamics model. The simulation results indicate a distinctive A dependence of the sigma production, that is, the increase of A is followed by an increase of the production cross sections. We find that the σ meson production in proton-induced reactions is strongly medium-dependent, and the produced σ mesons decaying in a denser medium experience a stronger mass shift towards lower masses. This mass shift is an experimentally accessible observable in the final state pion pairs, which do not suffer from reabsorption by the surrounding nucleons. It is pointed out that the ratio of measured sigma cross sections as a function of the sigma invariant-mass from various reactions is a good probe to explore the existence of the σ meson in a dense nuclear environment.展开更多
A numerical study on boundary layer flow behaviour, heat and mass transfer characteristics of a nanofluid over an exponentially stretching sheet in a porous medium is presented in this paper. The sheet is assumed to b...A numerical study on boundary layer flow behaviour, heat and mass transfer characteristics of a nanofluid over an exponentially stretching sheet in a porous medium is presented in this paper. The sheet is assumed to be permeable. The governing partial differential equations are transformed into coupled nonlinear ordinary differential equations by using suitable similarity transformations. The transformed equations are then solved numerically using the well known explicit finite difference scheme known as the Keller Box method. A detailed parametric study is performed to access the influence of the physical parameters on longitudinal velocity, temperature and nanoparticle volume fraction profiles as well as the local skin-friction coefficient, local Nusselt number and the local Sherwood number and then, the results are presented in both graphical and tabular forms.展开更多
文摘In the current work,inclined magnetic field,thermal radiation,and the Cattaneo-Christov heat flux are taken into account as we analyze the impact of chemical reaction on magneto-hydrodynamic Casson nanofluid flow on a stretching sheet.Modified Buongiorno’s nanofluid model has been used to model the flow governing equations.The stretching surface is embedded in a porousmedium.By using similarity transformations,the nonlinear partial differential equations are transformed into a set of dimensionless ordinary differential equations.The numerical solution of transformed dimensionless equations is achieved by applying the shooting procedure together with Rung-Kutta 4th-order method employing MATLAB.The impact of significant parameters on the velocity profile f(ζ),temperature distributionθ(ζ),concentration profileϕ(ζ),skin friction coefficient(Cf),Nusselt number(Nux)and Sherwood number(Shx)are analyzed and displayed in graphical and tabular formats.With an increase in Casson fluid 0.5<β<2,the motion of the Casson fluid decelerates whereas the temperature profile increases.As the thermal relation factor expands 0.1<γ1<0.4,the temperature reduces,and consequently thermal boundary layer shrinks.Additionally,by raising the level of thermal radiation 1<Rd<7,the temperature profile significantly improves,and an abrupt expansion has also been observed in the associated thermal boundary with raise thermal radiation strength.It was observed that higher permeability 0<K<4 hinders the acceleration of Casson fluid.Higher Brownian motion levels 0.2<Nb<0.6 correspond to lower levels of the Casson fluid concentration profile.Moreover,it is observed that chemical reaction 0.2<γ2<0.5 has an inverse relation with the concentration level of Casson fluid.The current model’s significant uses include heat energy enhancement,petroleum recovery,energy devices,food manufacturing processes,and cooling device adjustment,among others.Furthermore,present outcomes have been found in great agreementwith already publishedwork.
文摘This paper presents the study of convective heat and mass transfer characteristics of an incompressible MHD visco-elastic fluid flow immersed in a porous medium over a stretching sheet with chemical reaction and thermal stratification effects. The resultant governing boundary layer equations are highly non-linear and coupled form of partial differential equations, and they have been solved by using fourth order Runge-Kutta integration scheme with Newton Raphson shooting method. Numerical computations are carried out for the non-dimensional physical parameters. Here a numerical has been carried out to study the effect of different physical parameters such as visco-elasticity, permeability of the porous medium, magnetic field, Grashof number, Schmidt number, heat source parameter and chemical reaction parameter on the flow, heat and mass transfer characteristics.
文摘The present article deals with thermally stratified stagnation-point flow saturated in porous medium on surface of variable thickness along with more convincing and reliable surface condition termed as melting heat transfer.Homogeneous–heterogeneous reaction and radiative effects have been further taken into account to reconnoiterproperties of heat transfer.Melting heat transfer and phenomenon of homogeneous–heterogeneous reaction have engrossed widespread utilization in purification of metals,welding process,electroslag melting,biochemical systems,catalysis and several industrial developments.Suitable transformations are utilized to attain a scheme of ordinary differential equations possessing exceedingly nonlinear nature.Homotopic process is employed to develop convergent solutions of the resulting problem.Discussion regarding velocity,thermal field and concentration distribution for several involved parameters is pivotal part.Graphical behaviors of skin friction coefficient and Nusselt number are also portrayed.Concentration of the reactants is found to depreciate as a result of strength of both heterogeneous and homogeneous reaction parameters.With existence of melting phenomenon,declining attitude of fluid temperature is observed for higher radiation parameter.
文摘The mechanism of the interfacial reaction of Al_2O_3/medium Mn steel containing Nb was studied by means of the observation on the interfacial reaction phenomenon of Al_2O_3/medium Mn steel,and the analyses on the interracial phases.The results show that when T≥1550℃,the interfacial reac- tion of Al_2O_3/medium Mn steel containing Nb happened.In the medium Mn steel matrix,Nb exists in the form of NbC.NbC are the nucleating base of CO gas bubbles.
文摘Wittig reactions of benzaldehydes, alkanals, and cycloalkanals as well as of acetophenones are carried out with alkoxycarbonyl methylidenetriphenylphosphoranes in 10 w% aqueous NaOH, where the cinnamates and alkenoates produced are hydrolysed in situ and the corresponding acids are obtained after mostly simple extractive work-up, often without employing organic solvents. Under the same conditions, benzaldehydes are reacted with alkoxycarbonyl bromomethy-lidenephosphorane to produce 3-arylprop-2-ynoic acids (arylpropiolic acids).
基金the financial support from the Ministry of Science and Technology of China (grants 2012CB215500 and 2013CB933100)the National Natural Science Foundation of China (grants 21573222 and 21103178)
文摘Replacing platinum for catalyzing hydrogen evolution reaction (HER) in acidic medium remains great chal- lenges. Herein, we prepared few-layered MoS2 by ball milling as an efficient catalyst for HER in acidic medium, The activity of as-prepared MoS2 had a strong dependence on the ball milling time, Furthermore, Ketjen Black EC 300J was added into the ball-milled MoS2 followed by a second ball milling, and the resultant MoS2/carbon black hybrid material showed a much higher HER activity than MoS2 and carbon black alone. The enhanced activity of the MoS2/carbon black hybrid material was attributed to the increased abundance of catalytic edge sites of MoS) and excellent electrical coupling to the underlving carbon network.
文摘The problem of magneto-hydro-dynamic (MHD) mass and heat transfer of an oscillatory fluid in two-dimensional viscous, electrically conducting over an infinite vertical permeable moving plate in a saturated porous medium with the presence of a transverse magnetic field and chemical reaction is analytically presented. The governing equations, momentum, energy, and concentration are solved. Various flow parameters effects on velocity, temperature and concentration fields are discussed. It is found that, the fluid velocity increases with increasing both the permeability and chemical reaction parameters. While, it increases with decreasing the magnetic field parameter. Furthermore, the concentration increases with increasing chemical reaction parameters.
基金Sponsored by the Natural Science Foundation of Zhejiang Province (No. Y4100620)the Research Foundation of Education Bureau of Zhejiang Province (No. Y200906517)
文摘The reaction mechanism of amadori rearrangement in the initial stage of Maillard reaction has been investigated by means of density functional theory calculations in the gaseous phase and aqueous solution.Cyclic ribose and glycine were taken as the model in the amadori rearrangement.Reaction mechanisms have been proposed,and possibility for the formation of different compounds has been evaluated through calculating the relative energy changes for different steps of the reaction by following the total mass balance.The calculations reveal that the amadori rearrangement initialized via the intramolecular rearrangement,transferring one proton from N(3) to O(4) atom.In the next step,the second proton is also transferred from N(3) to O(4) atom,corresponding to the cleavage of C(4)-O(4) bond and the release of one water molecule.Then another proton is transferred from N(3) to C(5) atom via TS3 with the reaction barrier of 58.3 kcal·mol-1 after tunneling the effect correction calculated at the B3LYP/6-31+G(d) level of theory,and this step is rate limiting for the whole catalytic cycle.Ultimately,the product is generated via keto-enolic tautomerization.Present calculation could provide insights into the reaction mechanism of Maillard reaction since experimental evaluation of the role of intermediates in the Maillard reaction is quite complicated.
基金financial support by the National Natural Science Foundation of China (Grant: 51333008)Young Teacher Training Program of Sun Yat-sen University (Grant: 17lgpy86)
文摘Developing high-performance non-precious metal electrocatalysts for oxygen reduction reaction(ORR)is crucial for the commercialization of fuel cells and metal-air batteries.However,doped carbon-based materials only show good ORR activity in alkaline medium,and become less effective in acidic environment.We believe that an appropriate combination of both ionic and electronic transport path,and well dopant distribution of doped carbon-based materials would help to realize high ORR performance un-der both acidic and alkaline cond让ions.Accordingly,a nitrogen and sulfur co-doped carbon framework with hierarchical through-hole structure is fabricated by morphology-controlled solid-state pyrolysis of poly(aniline-co-2-ami no thiophenol)foam.The uniform high concentrations of nitrogen and sulfur,high intrinsic conductivity,and integrated three dimensional ionic and electronic transfer passageways of the 3D porous structure lead to synergistic effects in catalyzing ORR.As a result,the limiting current density of the carbonized poly(aniline-co-2-aminothiophenol)foam is equivalent to commercial Pt/C in acidic environment,and twice the latter in alkaline medium.
基金financially supported by the Ministry of Industry and Information Technology of China(No.TC180A6MR)China Scholarship Council and the National Natural Science Foundation of China(No.51404020)。
文摘The effect of Al content(0.035 wt%,0.5 wt%,1 wt%,and 2 wt%)on the composition change of steel and slag as well as inclusion transformation of high manganese steel after it has equilibrated with Ca O-Si O_(2)-Al_(2)O_(3)-Mg O slag was studied using the method of slag/steel reaction.The experimental results showed that as the initial content of Al increased from 0.035 wt%to 2 wt%,Al gradually replaced Mn to react with Si O_(2)in slag to avoid the loss of Mn due to the reaction;this process caused both Al_(2)O_(3)in slag and Si in steel to increase while Si O_(2)and Mn O in slag to reduce.In addition,the type of inclusions also evolved as the initial Al content increased.The evolution route of inclusions was Mn O→Mn O-Al_(2)O_(3)-Mg O→Mg O→Mn O-Ca O-Al_(2)O_(3)-Mg O and Mn O-Ca O-Mg O.The shape of inclusions evolved from spherical to irregular,became faceted,and finally transformed to spherical.The average size of inclusions presented a trend that was increasing first and then decreasing.The transformation mechanism of inclusions was explored.As the initial content of Al increased,Mg and Ca were reduced from top slag into molten steel in sequence,which consequently caused the transformation of inclusions.
文摘The chemical reaction effect on an unsteady magnetohydrodynamic (MHD) flow past a semi-infinite vertical porous plate with viscous dissipation is analyzed. The governing equations of motion, energy, and species are transformed into ordinary differential equations (ODEs) using the time dependent similarity parameter. The resultant ODEs are then solved numerically by a finite element method. The effects of various parameters on the velocity, temperature, and concentration profiles are presented graphically, and the values of the skin-friction, Nusselt number, and Sherwood number for various values of physical parameters are presented through tables.
基金the financial support of the 100-Talent Program of Chinese Academy of Sciences
文摘Affordable non-precious metal(NPM) catalysts played a vital role in the wide application of polymer electrolyte membrane fuel cells(PEMFC). In current work, a facile vacuum casting reacting method based on vacuum casting was introduced to prepare Fe-N_x-C oxygen reduction reaction(ORR) catalysts with high efficient in acid medium. The catalysts were prepared with ammonium ferrous sulfate hexahydrate(AFS) and 1,10-phenanthroline monohydrate utilizing homemade mesoporous silica template. The heat treatment and its influence on structure and performance were systematically evaluated to achieve superior ORR performance and some clues were found. And 850 ℃ was found to be the best temperature for the first and second pyrolysis. The linear sweep voltammetry(LSV) results showed that there were only 18 mV slightly negative shifts of half-wave potential(E_(1/2)) of the optimal catalyst(749 mV) compared with the commercial Pt/C(20 μg·Pt·cm^-2). Besides, I850 R also showed better electrochemical stability and methanol-tolerance than that of Pt/C. All evidences proved that our vacuum casting reacting strategy and heat treatment process were prospective for the future R&D of high performance Fe-N_x-C ORR catalysts.
文摘The influence of low-frequency sonolysis on the kinetics bimolecular liquid-phase reactions was studied with due regard for the association (dimers and trimers) of starting reagents. The mathematical modeling of chemical reactions that were described by nonlinear differential equations is performed. The steady states, the singular points characteristics, the nature of concentration oscillations in the reaction system are described. With increasing frequency and amplitude of low-frequency sonic waves (up to some critical value), we observed the cessation of the reaction. This observation offers an additional tool for controlling reaction rate by the external action of low-frequency vibrations. The conclusions of the work are obtained under certain assumptions. The exact determination of the critical conditions for changes in dynamics is beyond the scope of the problem.
文摘The unsteady stagnation-point flow of a hybrid nanofluid over a stretching/shrinking sheet embedded in a porous medium with mass transpiration and chemical reactions is considered.The momentum and mass transfer problems are combined to form a system of partial differential equations,which is converted into a set of ordinary differential equations via similarity transformation.These ordinary differential equations are solved analytically to obtain the solution for velocity and concentration profiles in exponential and hypergeometric forms,respectively.The concentration profile is obtained for four different cases namely constant wall concentration,uniform mass flux,general power law wall con-centration and general power law mass flux.The effect of different physical parameters such as Darcy number Da^(1-1),mass transpiration parameter V_(C),stretching/shrinking parameter (d),chemical reaction parameter(β)and Schmidt number (Sc)on velocity and concentration profile is examined.Results show that,the axial velocity will decreases as the shrinking sheet parameter increases,regardless of whether the suction or injection case is examined.The concentration decreases with an increase in the shrinking sheet parameter and the chemical reaction rate parameter.
基金National Natural Science Foundation of China under Grant Nos.10435080,10575075,and 10447006the Deutsche Forschungsgemeinschaft under Grant No.446CHV-113/91/1-3the National Research Concil of Thailand under Grant No.1.CH5/2549
文摘The sigma meson production in p + ^12C and p A- ^40Ca reactions at the incident energy Ep = 1.5 GeV is investigated within the Quantum Molecular Dynamics model. The simulation results indicate a distinctive A dependence of the sigma production, that is, the increase of A is followed by an increase of the production cross sections. We find that the σ meson production in proton-induced reactions is strongly medium-dependent, and the produced σ mesons decaying in a denser medium experience a stronger mass shift towards lower masses. This mass shift is an experimentally accessible observable in the final state pion pairs, which do not suffer from reabsorption by the surrounding nucleons. It is pointed out that the ratio of measured sigma cross sections as a function of the sigma invariant-mass from various reactions is a good probe to explore the existence of the σ meson in a dense nuclear environment.
文摘A numerical study on boundary layer flow behaviour, heat and mass transfer characteristics of a nanofluid over an exponentially stretching sheet in a porous medium is presented in this paper. The sheet is assumed to be permeable. The governing partial differential equations are transformed into coupled nonlinear ordinary differential equations by using suitable similarity transformations. The transformed equations are then solved numerically using the well known explicit finite difference scheme known as the Keller Box method. A detailed parametric study is performed to access the influence of the physical parameters on longitudinal velocity, temperature and nanoparticle volume fraction profiles as well as the local skin-friction coefficient, local Nusselt number and the local Sherwood number and then, the results are presented in both graphical and tabular forms.