Optimal escape theory predicts that animals would balance the costs and benefits of flight. One cost of not fleeing is the ongoing cost of vigilance for upcoming environmental threats. Our results show that FID increa...Optimal escape theory predicts that animals would balance the costs and benefits of flight. One cost of not fleeing is the ongoing cost of vigilance for upcoming environmental threats. Our results show that FID increases for vigilant hares with predator starting distance, due to the costs acquired by continuing to scan for ecological dangers. The presence of conspecifics within proximity distance for social hare was reduced FID due to collective vigilance, while a solitary animal had greater FID, due to less cooperative defense for predator detection. In both seasons, detection and flight initiation distance of the focal hare increased in open habitat due to a higher probability of detection for upcoming danger, while dense cover provided concealment but reduced the probability of detecting an incoming threat, reducing FID. Moreover, proximity to roads and the nearest refuge significantly influenced anti-predator risk by compensation energy to cope with approaching stimuli. In a landscape with heavy human hunting in retaliation to plantations damage has modified the natural behavior of the hare in the Shigar valley. The findings are discussed in the context of hare FID by humans and the suggestions for management and mitigation of human-wildlife conflict are also considered.展开更多
Human activity has been shown to influence how animals assess the risk of predation, but we know little about the spatial scale of such impacts. We quantified how vigilance and flight behavior in mule deer Odocoileus ...Human activity has been shown to influence how animals assess the risk of predation, but we know little about the spatial scale of such impacts. We quantified how vigilance and flight behavior in mule deer Odocoileus hemionus varied with distance from an area of concentrated human activity--a subalpine field station. An observer walked trails at various distances away from the station looking for deer. Upon encounter, the observer walked toward the focal animal and noted the distance at which it alerted and directed its attention to the approaching human (Alert Distance; AD), and the distance at which it fled (Flight Initiation Distance;. FID). AD and FID both increased nonlinearly with distance from the center of the field station, reaching pla- teaus around 250 m and 750 m, respectively. Deer also tended to flee by stotting or running, rather than by walking, when far from the station but they walked away when near the station. These results indicate that deer perceive lower risk near a focused area of human activity, and that vigilance and flight behaviors respond on somewhat different spatial scales. The concept of a spatial "human footprint" on behavior may be useful for understanding how human activities affect wildlife展开更多
文摘Optimal escape theory predicts that animals would balance the costs and benefits of flight. One cost of not fleeing is the ongoing cost of vigilance for upcoming environmental threats. Our results show that FID increases for vigilant hares with predator starting distance, due to the costs acquired by continuing to scan for ecological dangers. The presence of conspecifics within proximity distance for social hare was reduced FID due to collective vigilance, while a solitary animal had greater FID, due to less cooperative defense for predator detection. In both seasons, detection and flight initiation distance of the focal hare increased in open habitat due to a higher probability of detection for upcoming danger, while dense cover provided concealment but reduced the probability of detecting an incoming threat, reducing FID. Moreover, proximity to roads and the nearest refuge significantly influenced anti-predator risk by compensation energy to cope with approaching stimuli. In a landscape with heavy human hunting in retaliation to plantations damage has modified the natural behavior of the hare in the Shigar valley. The findings are discussed in the context of hare FID by humans and the suggestions for management and mitigation of human-wildlife conflict are also considered.
文摘Human activity has been shown to influence how animals assess the risk of predation, but we know little about the spatial scale of such impacts. We quantified how vigilance and flight behavior in mule deer Odocoileus hemionus varied with distance from an area of concentrated human activity--a subalpine field station. An observer walked trails at various distances away from the station looking for deer. Upon encounter, the observer walked toward the focal animal and noted the distance at which it alerted and directed its attention to the approaching human (Alert Distance; AD), and the distance at which it fled (Flight Initiation Distance;. FID). AD and FID both increased nonlinearly with distance from the center of the field station, reaching pla- teaus around 250 m and 750 m, respectively. Deer also tended to flee by stotting or running, rather than by walking, when far from the station but they walked away when near the station. These results indicate that deer perceive lower risk near a focused area of human activity, and that vigilance and flight behaviors respond on somewhat different spatial scales. The concept of a spatial "human footprint" on behavior may be useful for understanding how human activities affect wildlife