Concerning the stability problem of functional equations, we introduce a general (m, n)- Cauchy-Jensen functional equation and establish new theorems about the Hyers-Ulam stability of general (m, n)-Cauchy Jensen ...Concerning the stability problem of functional equations, we introduce a general (m, n)- Cauchy-Jensen functional equation and establish new theorems about the Hyers-Ulam stability of general (m, n)-Cauchy Jensen additive mappings in C^*-algebras, which generalize the result's obtained for Cauchy-Jensen type additive mappings.展开更多
For any element a in a generalized 2^n-dimensional Clifford algebra Lln (F) over an arbitrary field F of characteristic not equal to two, it is shown that there exits a universal invertible matrix Pn over Lln(F) s...For any element a in a generalized 2^n-dimensional Clifford algebra Lln (F) over an arbitrary field F of characteristic not equal to two, it is shown that there exits a universal invertible matrix Pn over Lln(F) such that Pn^-1DnPn= φ(α)∈F^2n×2n, where φ(a) is a matrix representation of α over and Dα is a diagonal matrix consisting of a or its conjugate.展开更多
Let F be an algebracially closed field of characteristic p】2, and L be the p<sup>n</sup>-dimensional Zassenhaus algebra with the maximal invariant subalgebra L<sub>0</sub> and the standard fil...Let F be an algebracially closed field of characteristic p】2, and L be the p<sup>n</sup>-dimensional Zassenhaus algebra with the maximal invariant subalgebra L<sub>0</sub> and the standard filtration {L<sub>i</sub>}|<sub>i=-1</sub><sup>p<sup>n</sup>-2</sup>. Then the number of isomorphism classes of simple L-modules is equal to that of simple L<sub>0</sub>-modules, corresponding to an arbitrary character of L except when its height is biggest. As to the number corresponding to the exception there was an earlier result saying that it is not bigger than p<sup>n</sup>.展开更多
Let X, Y be vector spaces. It is shown that if a mapping f : X → Y satisfies f((x+y)/2+z)+f((x-y)/2+z=f(x)+2f(z),(0.1) f((x+y)/2+z)-f((x-y)/2+z)f(y),(0.2) or 2f((x+y)/2+x)=f(...Let X, Y be vector spaces. It is shown that if a mapping f : X → Y satisfies f((x+y)/2+z)+f((x-y)/2+z=f(x)+2f(z),(0.1) f((x+y)/2+z)-f((x-y)/2+z)f(y),(0.2) or 2f((x+y)/2+x)=f(x)+f(y)+2f(z)(0.3)for all x, y, z ∈ X, then the mapping f : X →Y is Cauchy additive. Furthermore, we prove the Cauchy-Rassias stability of the functional equations (0.1), (0.2) and (0.3) in Banach spaces. The results are applied to investigate isomorphisms between unital Banach algebras.展开更多
文摘Concerning the stability problem of functional equations, we introduce a general (m, n)- Cauchy-Jensen functional equation and establish new theorems about the Hyers-Ulam stability of general (m, n)-Cauchy Jensen additive mappings in C^*-algebras, which generalize the result's obtained for Cauchy-Jensen type additive mappings.
文摘For any element a in a generalized 2^n-dimensional Clifford algebra Lln (F) over an arbitrary field F of characteristic not equal to two, it is shown that there exits a universal invertible matrix Pn over Lln(F) such that Pn^-1DnPn= φ(α)∈F^2n×2n, where φ(a) is a matrix representation of α over and Dα is a diagonal matrix consisting of a or its conjugate.
基金Supported in part by the National Natural Science Foundation of China Grant 19801022the Scientifictechnological Major Project of Educational Ministry of China, Grant 99036.
文摘Let F be an algebracially closed field of characteristic p】2, and L be the p<sup>n</sup>-dimensional Zassenhaus algebra with the maximal invariant subalgebra L<sub>0</sub> and the standard filtration {L<sub>i</sub>}|<sub>i=-1</sub><sup>p<sup>n</sup>-2</sup>. Then the number of isomorphism classes of simple L-modules is equal to that of simple L<sub>0</sub>-modules, corresponding to an arbitrary character of L except when its height is biggest. As to the number corresponding to the exception there was an earlier result saying that it is not bigger than p<sup>n</sup>.
基金Supported by Korea Research Foundation Grant KRF-2005-070-C00009
文摘Let X, Y be vector spaces. It is shown that if a mapping f : X → Y satisfies f((x+y)/2+z)+f((x-y)/2+z=f(x)+2f(z),(0.1) f((x+y)/2+z)-f((x-y)/2+z)f(y),(0.2) or 2f((x+y)/2+x)=f(x)+f(y)+2f(z)(0.3)for all x, y, z ∈ X, then the mapping f : X →Y is Cauchy additive. Furthermore, we prove the Cauchy-Rassias stability of the functional equations (0.1), (0.2) and (0.3) in Banach spaces. The results are applied to investigate isomorphisms between unital Banach algebras.