期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Qualia Role-Based Quantity Relation Extraction for Solving Algebra Story Problems
1
作者 Bin He Hao Meng +2 位作者 Zhejin Zhang Rui Liu Ting Zhang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第7期403-419,共17页
A qualia role-based entity-dependency graph(EDG)is proposed to represent and extract quantity relations for solving algebra story problems stated in Chinese.Traditional neural solvers use end-to-end models to translat... A qualia role-based entity-dependency graph(EDG)is proposed to represent and extract quantity relations for solving algebra story problems stated in Chinese.Traditional neural solvers use end-to-end models to translate problem texts into math expressions,which lack quantity relation acquisition in sophisticated scenarios.To address the problem,the proposed method leverages EDG to represent quantity relations hidden in qualia roles of math objects.Algorithms were designed for EDG generation and quantity relation extraction for solving algebra story problems.Experimental result shows that the proposedmethod achieved an average accuracy of 82.2%on quantity relation extraction compared to 74.5%of baseline method.Another prompt learning result shows a 5%increase obtained in problem solving by injecting the extracted quantity relations into the baseline neural solvers. 展开更多
关键词 Quantity relation extraction algebra story problem solving qualia role entity dependency graph
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部