Dear Editor, The time-dependent algebraic Riccati equation(TDARE) problem is applied to many optimal control industrial applications. It is susceptible to interference from measurement noises in the virtual environmen...Dear Editor, The time-dependent algebraic Riccati equation(TDARE) problem is applied to many optimal control industrial applications. It is susceptible to interference from measurement noises in the virtual environment, which current methods cannot effectively address. A normbased adaptive coefficient zeroing neural network(NACZNN) model to solve the TDARE problem is proposed.展开更多
As an inorganic chemical,magnesium iodide has a significant crystalline structure.It is a complex and multifunctional substance that has the potential to be used in a wide range of medical advancements.Molecular graph...As an inorganic chemical,magnesium iodide has a significant crystalline structure.It is a complex and multifunctional substance that has the potential to be used in a wide range of medical advancements.Molecular graph theory,on the other hand,provides a sufficient and cost-effective method of investigating chemical structures and networks.M-polynomial is a relatively new method for studying chemical networks and structures in molecular graph theory.It displays numerical descriptors in algebraic form and highlights molecular features in the form of a polynomial function.We present a polynomials display of magnesium iodide structure and calculate several M-polynomials in this paper,particularly the M-polynomials of the augmented Zagreb index,inverse sum index,hyper Zagreb index and for the symmetric division index.展开更多
How to accelerate the convergence speed and avoid computing the inversion of a Jacobian matrix is important in the solution of nonlinear algebraic equations(NAEs).This paper develops an approach with a splitting-linea...How to accelerate the convergence speed and avoid computing the inversion of a Jacobian matrix is important in the solution of nonlinear algebraic equations(NAEs).This paper develops an approach with a splitting-linearizing technique based on the nonlinear term to reduce the effect of the nonlinear terms.We decompose the nonlinear terms in the NAEs through a splitting parameter and then linearize the NAEs around the values at the previous step to a linear system.Through the maximal orthogonal projection concept,to minimize a merit function within a selected interval of splitting parameters,the optimal parameters can be quickly determined.In each step,a linear system is solved by the Gaussian elimination method,and the whole iteration procedure is convergent very fast.Several numerical tests show the high performance of the optimal split-linearization iterative method(OSLIM).展开更多
Solving Algebraic Problems with Geometry Diagrams(APGDs)poses a significant challenge in artificial intelligence due to the complex and diverse geometric relations among geometric objects.Problems typically involve bo...Solving Algebraic Problems with Geometry Diagrams(APGDs)poses a significant challenge in artificial intelligence due to the complex and diverse geometric relations among geometric objects.Problems typically involve both textual descriptions and geometry diagrams,requiring a joint understanding of these modalities.Although considerable progress has been made in solving math word problems,research on solving APGDs still cannot discover implicit geometry knowledge for solving APGDs,which limits their ability to effectively solve problems.In this study,a systematic and modular three-phase scheme is proposed to design an algorithm for solving APGDs that involve textual and diagrammatic information.The three-phase scheme begins with the application of the statetransformer paradigm,modeling the problem-solving process and effectively representing the intermediate states and transformations during the process.Next,a generalized APGD-solving approach is introduced to effectively extract geometric knowledge from the problem’s textual descriptions and diagrams.Finally,a specific algorithm is designed focusing on diagram understanding,which utilizes the vectorized syntax-semantics model to extract basic geometric relations from the diagram.A method for generating derived relations,which are essential for solving APGDs,is also introduced.Experiments on real-world datasets,including geometry calculation problems and shaded area problems,demonstrate that the proposed diagram understanding method significantly improves problem-solving accuracy compared to methods relying solely on simple diagram parsing.展开更多
SKINNY-64-64 is a lightweight block cipher with a 64-bit block length and key length,and it is mainly used on the Internet of Things(IoT).Currently,faults can be injected into cryptographic devices by attackers in a v...SKINNY-64-64 is a lightweight block cipher with a 64-bit block length and key length,and it is mainly used on the Internet of Things(IoT).Currently,faults can be injected into cryptographic devices by attackers in a variety of ways,but it is still difficult to achieve a precisely located fault attacks at a low cost,whereas a Hardware Trojan(HT)can realize this.Temperature,as a physical quantity incidental to the operation of a cryptographic device,is easily overlooked.In this paper,a temperature-triggered HT(THT)is designed,which,when activated,causes a specific bit of the intermediate state of the SKINNY-64-64 to be flipped.Further,in this paper,a THT-based algebraic fault analysis(THT-AFA)method is proposed.To demonstrate the effectiveness of the method,experiments on algebraic fault analysis(AFA)and THT-AFA have been carried out on SKINNY-64-64.In the THT-AFA for SKINNY-64-64,it is only required to activate the THT 3 times to obtain the master key with a 100%success rate,and the average time for the attack is 64.57 s.However,when performing AFA on this cipher,we provide a relation-ship between the number of different faults and the residual entropy of the key.In comparison,our proposed THT-AFA method has better performance in terms of attack efficiency.To the best of our knowledge,this is the first HT attack on SKINNY-64-64.展开更多
In this paper,X is a locally compact Hausdorff space and A is a Banach algebra.First,we study some basic features of C0(X,A)related to BSE concept,which are gotten from A.In particular,we prove that if C0(X,A)has the ...In this paper,X is a locally compact Hausdorff space and A is a Banach algebra.First,we study some basic features of C0(X,A)related to BSE concept,which are gotten from A.In particular,we prove that if C0(X,A)has the BSE property then A has so.We also establish the converse of this result,whenever X is discrete and A has the BSE-norm property.Furthermore,we prove the same result for the BSE property of type I.Finally,we prove that C0(X,A)has the BSE-norm property if and only if A has so.展开更多
Given a compact and regular Hausdorff measure space (X, μ), with μ a Radon measure, it is known that the generalised space M(X) of all the positive Radon measures on X is isomorphic to the space of essentially bound...Given a compact and regular Hausdorff measure space (X, μ), with μ a Radon measure, it is known that the generalised space M(X) of all the positive Radon measures on X is isomorphic to the space of essentially bounded functions L<sup>∞</sup>(X, μ) on X. We confirm that the commutative von Neumann algebras M⊂B(H), with H=L<sup>2</sup>(X, μ), are unitary equivariant to the maximal ideals of the commutative algebra C(X). Subsequenly, we use the measure groupoid to formulate the algebraic and topological structures of the commutative algebra C(X) following its action on M(X) and define its representation and ergodic dynamical system on the commutative von Neumann algebras of M of B(H) .展开更多
This paper explores the significant impact of algebraic topology on diverse real-world applications.Starting with an introduction to the historical development and essence of algebraic topology,it delves into its appl...This paper explores the significant impact of algebraic topology on diverse real-world applications.Starting with an introduction to the historical development and essence of algebraic topology,it delves into its applications in neuroscience,physics,biology,engineering,data analysis,and Geographic Information Systems(GIS).Remarkable applications incorporate the analysis of neural networks,quantum mechanics,materials science,and disaster management,showcasing its boundless significance.Despite computational challenges,this study outlines prospects,emphasizing the requirement for proficient algorithms,noise robustness,multi-scale analysis,machine learning integration,user-friendly tools,and interdisciplinary collaborations.In essence,algebraic topology provides a transformative lens for uncovering stowed-away topological structures in complex data,offering solutions to perplexing problems in science,engineering,and society,with vast potential for future exploration and innovation.展开更多
In this paper,we consider the algebraic structure of derivative Hardy Spaces.By using the method of[6,12,15],we get the Duhamel product forming Banach algebra in derivative Hardy Spaces,and invertibility criterion,and...In this paper,we consider the algebraic structure of derivative Hardy Spaces.By using the method of[6,12,15],we get the Duhamel product forming Banach algebra in derivative Hardy Spaces,and invertibility criterion,and describe the extended eigenvalue of the integral operator V.We generalize the results in[1,2,6,11,16].展开更多
In this paper, from the spacetime algebra associated with the Minkowski space ℝ3,1by means of a change of signature, we describe a quaternionic representation of the split-tetraquaternion algebra which incorporates th...In this paper, from the spacetime algebra associated with the Minkowski space ℝ3,1by means of a change of signature, we describe a quaternionic representation of the split-tetraquaternion algebra which incorporates the Pauli algebra, the split-biquaternion algebra and the split-quaternion algebra, we relate these algebras to Clifford algebras and we show the emergence of the stabilized Poincaré-Heisenberg algebra from the split-tetraquaternion algebra. We list without going into details some of their applications in Physics and in Born geometry.展开更多
Because homology on compact homogeneous nilpotent manifolds is closely related to homology on Lie algebras, studying homology on Lie algebras is helpful for further studying homology on compact homogeneous nilpotent m...Because homology on compact homogeneous nilpotent manifolds is closely related to homology on Lie algebras, studying homology on Lie algebras is helpful for further studying homology on compact homogeneous nilpotent manifolds. So we start with the differential sequence of Lie algebras. The Lie algebra g has the differential sequence E0,E1,⋯,Es⋯, which leads to the chain complex Es0→Δs0Ess→Δs1⋯→ΔsiEs(i+1)s→Δsi+1⋯of Esby discussing the chain complex E10→Δ10E11→Δ11⋯→Δ1r−1E1r→Δ1r⋯of E1and proves that Es+1i≅Hi(Es)=KerΔsi+1/ImΔsiand therefore Es+1≅H(Es)by the chain complex of Es(see Theorem 2).展开更多
The current article intends to introduce the reader to the concept of injective and projective modules and to describe the CFT. We present a clear view to show the homological algebra and injective and projective modu...The current article intends to introduce the reader to the concept of injective and projective modules and to describe the CFT. We present a clear view to show the homological algebra and injective and projective modules.展开更多
The superiority of hypothetical quantum computers is not due to faster calculations but due to different scheme of calculations running on special hardware. At the same time, one should realize that quantum computers ...The superiority of hypothetical quantum computers is not due to faster calculations but due to different scheme of calculations running on special hardware. At the same time, one should realize that quantum computers would only provide dramatic speedups for a few specific problems, for example, factoring integers and breaking cryptographic codes in the conventional quantum computing approach. The core of quantum computing follows the way a state of a quantum system is defined when basic things interact with each other. In the conventional approach, it is implemented through the tensor product of qubits. In the suggested geometric algebra formalism simultaneous availability of all the results for non-measured observables is based on the definition of states as points on a three-dimensional sphere, which is very different from the usual Hilbert space scheme.展开更多
In this paper,we first give the general forms of skew commuting maps and skew anti-commuting maps by the Peirce decomposition on a unital ring with a nontrivial idempotent,respectively,and then,as applications,we obta...In this paper,we first give the general forms of skew commuting maps and skew anti-commuting maps by the Peirce decomposition on a unital ring with a nontrivial idempotent,respectively,and then,as applications,we obtain the concrete characterizations of all nonadditive skew(anti-)commuting maps on some operator algebras.展开更多
In this paper,we define a new class of control functions through aggregate special functions.These class of control functions help us to stabilize and approximate a tri-additiveψ-functional inequality to get a better...In this paper,we define a new class of control functions through aggregate special functions.These class of control functions help us to stabilize and approximate a tri-additiveψ-functional inequality to get a better estimation for permuting tri-homomorphisms and permuting tri-derivations in unital C*-algebras and Banach algebras by the vector-valued alternative fixed point theorem.展开更多
In this paper, we investigate the growth of transcendental entire solutionsof the following algebraic differential equation a(z)f'~2 +(b_2(z)f^2 +b_1(z)f +b_0(z))f'=d_3(z)f^3+d_2(z)f^2 +d_1(z)f +d_0(z), where ...In this paper, we investigate the growth of transcendental entire solutionsof the following algebraic differential equation a(z)f'~2 +(b_2(z)f^2 +b_1(z)f +b_0(z))f'=d_3(z)f^3+d_2(z)f^2 +d_1(z)f +d_0(z), where a(z), b_i(z) (0<- i <=2) and d_j (z) (0<=j<= 3) are allpolynomials, and this equation relates closely to the following well-known algebraic differentialequation C(z,w)w'~2 + B(z,w)w' + A(z,w) =0, where G(z,w)not ident to 0, B(z,w) and A(z,w) are threepolynomials in z and w. We give relationships between the growth of entire solutions and the degreesof the above three polynomials in detail.展开更多
Aim To study an algebraic of the dynamical equations of holonomic mechanical systems in relative motion. Methods The equations of motion were presented in a contravariant algebraic form and an algebraic product was...Aim To study an algebraic of the dynamical equations of holonomic mechanical systems in relative motion. Methods The equations of motion were presented in a contravariant algebraic form and an algebraic product was determined. Results and Conclusion The equations a Lie algebraic structure if any nonpotential generalized force doesn't exist while while the equations possess a Lie-admissible algebraic structure if nonpotential generalized forces exist .展开更多
Based on the dual source cumulative rotation technique in the time-domain proposed by Zeng and MacBeth(1993),a new algebraic processing technique for extracting shear-wave splitting parameters from multi-component V...Based on the dual source cumulative rotation technique in the time-domain proposed by Zeng and MacBeth(1993),a new algebraic processing technique for extracting shear-wave splitting parameters from multi-component VSP data in frequency-dependent medium has been developed.By using this dual source cumulative rotation technique in the frequency-domain(DCTF),anisotropic parameters,including polarization direction of the shear-waves and timedelay between the fast and slow shear-waves,can be estimated for each frequency component in the frequency domain.It avoids the possible error which comes from using a narrow-band filter in the current commonly used method.By using synthetic seismograms,the feasibility and validity of the technique was tested and a comparison with the currently used method was also given.The results demonstrate that the shear-wave splitting parameters frequency dependence can be extracted directly from four-component seismic data using the DCTF.In the presence of larger scale fractures,substantial frequency dependence would be found in the seismic frequency range,which implies that dispersion would occur at seismic frequencies.Our study shows that shear-wave anisotropy decreases as frequency increases.展开更多
An algebraic Harniltonian for the two coupled nonlinear vibrations of highly excited nonrigid molecule HCP was presented. The Hamiltonian reduces to the conventional one in a limit which was expressed in terms of harm...An algebraic Harniltonian for the two coupled nonlinear vibrations of highly excited nonrigid molecule HCP was presented. The Hamiltonian reduces to the conventional one in a limit which was expressed in terms of harmonic oscillator operators. It showed that the algebraic model can better reproduce the data than the conventional model by fitting the observed data of HCP.展开更多
In this paper, by using the matrix representation of the generalized quaternion algebra, we discussed solution problem for two classes of the first_degree algebraic equation of the generalized quaternion and obtained ...In this paper, by using the matrix representation of the generalized quaternion algebra, we discussed solution problem for two classes of the first_degree algebraic equation of the generalized quaternion and obtained critical conditions on existence of a unique solution, infinitely many solutions or nonexistence any solution for the two classes algebraic equation.展开更多
基金supported in part by the Natural Science Foundation of Guangdong Province,China(2021A 1515011847)Postgraduate Education Innovation Project of Guangdong Ocean University(202214,202250,202251,202159,202160)+1 种基金the Special Project in Key Fields of Universities in Department of Education of Guangdong Province(2019KZDZX1036)the Key Laboratory of Digital Signal and Image Processing of Guangdong Province(2019GDDSIPL-01)。
文摘Dear Editor, The time-dependent algebraic Riccati equation(TDARE) problem is applied to many optimal control industrial applications. It is susceptible to interference from measurement noises in the virtual environment, which current methods cannot effectively address. A normbased adaptive coefficient zeroing neural network(NACZNN) model to solve the TDARE problem is proposed.
文摘As an inorganic chemical,magnesium iodide has a significant crystalline structure.It is a complex and multifunctional substance that has the potential to be used in a wide range of medical advancements.Molecular graph theory,on the other hand,provides a sufficient and cost-effective method of investigating chemical structures and networks.M-polynomial is a relatively new method for studying chemical networks and structures in molecular graph theory.It displays numerical descriptors in algebraic form and highlights molecular features in the form of a polynomial function.We present a polynomials display of magnesium iodide structure and calculate several M-polynomials in this paper,particularly the M-polynomials of the augmented Zagreb index,inverse sum index,hyper Zagreb index and for the symmetric division index.
基金support provided by the Ministry of Science and Technology,Taiwan,ROC under Contract No.MOST 110-2221-E-019-044.
文摘How to accelerate the convergence speed and avoid computing the inversion of a Jacobian matrix is important in the solution of nonlinear algebraic equations(NAEs).This paper develops an approach with a splitting-linearizing technique based on the nonlinear term to reduce the effect of the nonlinear terms.We decompose the nonlinear terms in the NAEs through a splitting parameter and then linearize the NAEs around the values at the previous step to a linear system.Through the maximal orthogonal projection concept,to minimize a merit function within a selected interval of splitting parameters,the optimal parameters can be quickly determined.In each step,a linear system is solved by the Gaussian elimination method,and the whole iteration procedure is convergent very fast.Several numerical tests show the high performance of the optimal split-linearization iterative method(OSLIM).
基金supported by the National Natural Science Foundation of China(No.61977029)the Fundamental Research Funds for the Central Universities,CCNU(No.3110120001).
文摘Solving Algebraic Problems with Geometry Diagrams(APGDs)poses a significant challenge in artificial intelligence due to the complex and diverse geometric relations among geometric objects.Problems typically involve both textual descriptions and geometry diagrams,requiring a joint understanding of these modalities.Although considerable progress has been made in solving math word problems,research on solving APGDs still cannot discover implicit geometry knowledge for solving APGDs,which limits their ability to effectively solve problems.In this study,a systematic and modular three-phase scheme is proposed to design an algorithm for solving APGDs that involve textual and diagrammatic information.The three-phase scheme begins with the application of the statetransformer paradigm,modeling the problem-solving process and effectively representing the intermediate states and transformations during the process.Next,a generalized APGD-solving approach is introduced to effectively extract geometric knowledge from the problem’s textual descriptions and diagrams.Finally,a specific algorithm is designed focusing on diagram understanding,which utilizes the vectorized syntax-semantics model to extract basic geometric relations from the diagram.A method for generating derived relations,which are essential for solving APGDs,is also introduced.Experiments on real-world datasets,including geometry calculation problems and shaded area problems,demonstrate that the proposed diagram understanding method significantly improves problem-solving accuracy compared to methods relying solely on simple diagram parsing.
基金supported in part by the Natural Science Foundation of Heilongjiang Province of China(Grant No.LH2022F053)in part by the Scientific and technological development project of the central government guiding local(Grant No.SBZY2021E076)+2 种基金in part by the PostdoctoralResearch Fund Project of Heilongjiang Province of China(Grant No.LBH-Q21195)in part by the Fundamental Research Funds of Heilongjiang Provincial Universities of China(Grant No.145209146)in part by the National Natural Science Foundation of China(NSFC)(Grant No.61501275).
文摘SKINNY-64-64 is a lightweight block cipher with a 64-bit block length and key length,and it is mainly used on the Internet of Things(IoT).Currently,faults can be injected into cryptographic devices by attackers in a variety of ways,but it is still difficult to achieve a precisely located fault attacks at a low cost,whereas a Hardware Trojan(HT)can realize this.Temperature,as a physical quantity incidental to the operation of a cryptographic device,is easily overlooked.In this paper,a temperature-triggered HT(THT)is designed,which,when activated,causes a specific bit of the intermediate state of the SKINNY-64-64 to be flipped.Further,in this paper,a THT-based algebraic fault analysis(THT-AFA)method is proposed.To demonstrate the effectiveness of the method,experiments on algebraic fault analysis(AFA)and THT-AFA have been carried out on SKINNY-64-64.In the THT-AFA for SKINNY-64-64,it is only required to activate the THT 3 times to obtain the master key with a 100%success rate,and the average time for the attack is 64.57 s.However,when performing AFA on this cipher,we provide a relation-ship between the number of different faults and the residual entropy of the key.In comparison,our proposed THT-AFA method has better performance in terms of attack efficiency.To the best of our knowledge,this is the first HT attack on SKINNY-64-64.
文摘In this paper,X is a locally compact Hausdorff space and A is a Banach algebra.First,we study some basic features of C0(X,A)related to BSE concept,which are gotten from A.In particular,we prove that if C0(X,A)has the BSE property then A has so.We also establish the converse of this result,whenever X is discrete and A has the BSE-norm property.Furthermore,we prove the same result for the BSE property of type I.Finally,we prove that C0(X,A)has the BSE-norm property if and only if A has so.
文摘Given a compact and regular Hausdorff measure space (X, μ), with μ a Radon measure, it is known that the generalised space M(X) of all the positive Radon measures on X is isomorphic to the space of essentially bounded functions L<sup>∞</sup>(X, μ) on X. We confirm that the commutative von Neumann algebras M⊂B(H), with H=L<sup>2</sup>(X, μ), are unitary equivariant to the maximal ideals of the commutative algebra C(X). Subsequenly, we use the measure groupoid to formulate the algebraic and topological structures of the commutative algebra C(X) following its action on M(X) and define its representation and ergodic dynamical system on the commutative von Neumann algebras of M of B(H) .
文摘This paper explores the significant impact of algebraic topology on diverse real-world applications.Starting with an introduction to the historical development and essence of algebraic topology,it delves into its applications in neuroscience,physics,biology,engineering,data analysis,and Geographic Information Systems(GIS).Remarkable applications incorporate the analysis of neural networks,quantum mechanics,materials science,and disaster management,showcasing its boundless significance.Despite computational challenges,this study outlines prospects,emphasizing the requirement for proficient algorithms,noise robustness,multi-scale analysis,machine learning integration,user-friendly tools,and interdisciplinary collaborations.In essence,algebraic topology provides a transformative lens for uncovering stowed-away topological structures in complex data,offering solutions to perplexing problems in science,engineering,and society,with vast potential for future exploration and innovation.
基金Supported by National Natural Science Foundation of China(11801094).
文摘In this paper,we consider the algebraic structure of derivative Hardy Spaces.By using the method of[6,12,15],we get the Duhamel product forming Banach algebra in derivative Hardy Spaces,and invertibility criterion,and describe the extended eigenvalue of the integral operator V.We generalize the results in[1,2,6,11,16].
文摘In this paper, from the spacetime algebra associated with the Minkowski space ℝ3,1by means of a change of signature, we describe a quaternionic representation of the split-tetraquaternion algebra which incorporates the Pauli algebra, the split-biquaternion algebra and the split-quaternion algebra, we relate these algebras to Clifford algebras and we show the emergence of the stabilized Poincaré-Heisenberg algebra from the split-tetraquaternion algebra. We list without going into details some of their applications in Physics and in Born geometry.
文摘Because homology on compact homogeneous nilpotent manifolds is closely related to homology on Lie algebras, studying homology on Lie algebras is helpful for further studying homology on compact homogeneous nilpotent manifolds. So we start with the differential sequence of Lie algebras. The Lie algebra g has the differential sequence E0,E1,⋯,Es⋯, which leads to the chain complex Es0→Δs0Ess→Δs1⋯→ΔsiEs(i+1)s→Δsi+1⋯of Esby discussing the chain complex E10→Δ10E11→Δ11⋯→Δ1r−1E1r→Δ1r⋯of E1and proves that Es+1i≅Hi(Es)=KerΔsi+1/ImΔsiand therefore Es+1≅H(Es)by the chain complex of Es(see Theorem 2).
文摘The current article intends to introduce the reader to the concept of injective and projective modules and to describe the CFT. We present a clear view to show the homological algebra and injective and projective modules.
文摘The superiority of hypothetical quantum computers is not due to faster calculations but due to different scheme of calculations running on special hardware. At the same time, one should realize that quantum computers would only provide dramatic speedups for a few specific problems, for example, factoring integers and breaking cryptographic codes in the conventional quantum computing approach. The core of quantum computing follows the way a state of a quantum system is defined when basic things interact with each other. In the conventional approach, it is implemented through the tensor product of qubits. In the suggested geometric algebra formalism simultaneous availability of all the results for non-measured observables is based on the definition of states as points on a three-dimensional sphere, which is very different from the usual Hilbert space scheme.
基金supported by the National Natural Science Foundation of China (Nos.12171290,12301152)the Natural Science Foundation of Shanxi Province (No.202203021222018)。
文摘In this paper,we first give the general forms of skew commuting maps and skew anti-commuting maps by the Peirce decomposition on a unital ring with a nontrivial idempotent,respectively,and then,as applications,we obtain the concrete characterizations of all nonadditive skew(anti-)commuting maps on some operator algebras.
基金partially supported by the Natural Sciences and Engineering Research Council of Canada(2019-03907)。
文摘In this paper,we define a new class of control functions through aggregate special functions.These class of control functions help us to stabilize and approximate a tri-additiveψ-functional inequality to get a better estimation for permuting tri-homomorphisms and permuting tri-derivations in unital C*-algebras and Banach algebras by the vector-valued alternative fixed point theorem.
文摘In this paper, we investigate the growth of transcendental entire solutionsof the following algebraic differential equation a(z)f'~2 +(b_2(z)f^2 +b_1(z)f +b_0(z))f'=d_3(z)f^3+d_2(z)f^2 +d_1(z)f +d_0(z), where a(z), b_i(z) (0<- i <=2) and d_j (z) (0<=j<= 3) are allpolynomials, and this equation relates closely to the following well-known algebraic differentialequation C(z,w)w'~2 + B(z,w)w' + A(z,w) =0, where G(z,w)not ident to 0, B(z,w) and A(z,w) are threepolynomials in z and w. We give relationships between the growth of entire solutions and the degreesof the above three polynomials in detail.
文摘Aim To study an algebraic of the dynamical equations of holonomic mechanical systems in relative motion. Methods The equations of motion were presented in a contravariant algebraic form and an algebraic product was determined. Results and Conclusion The equations a Lie algebraic structure if any nonpotential generalized force doesn't exist while while the equations possess a Lie-admissible algebraic structure if nonpotential generalized forces exist .
基金supported by the National Natural Science Foundation of China (No. 41004055)
文摘Based on the dual source cumulative rotation technique in the time-domain proposed by Zeng and MacBeth(1993),a new algebraic processing technique for extracting shear-wave splitting parameters from multi-component VSP data in frequency-dependent medium has been developed.By using this dual source cumulative rotation technique in the frequency-domain(DCTF),anisotropic parameters,including polarization direction of the shear-waves and timedelay between the fast and slow shear-waves,can be estimated for each frequency component in the frequency domain.It avoids the possible error which comes from using a narrow-band filter in the current commonly used method.By using synthetic seismograms,the feasibility and validity of the technique was tested and a comparison with the currently used method was also given.The results demonstrate that the shear-wave splitting parameters frequency dependence can be extracted directly from four-component seismic data using the DCTF.In the presence of larger scale fractures,substantial frequency dependence would be found in the seismic frequency range,which implies that dispersion would occur at seismic frequencies.Our study shows that shear-wave anisotropy decreases as frequency increases.
文摘An algebraic Harniltonian for the two coupled nonlinear vibrations of highly excited nonrigid molecule HCP was presented. The Hamiltonian reduces to the conventional one in a limit which was expressed in terms of harmonic oscillator operators. It showed that the algebraic model can better reproduce the data than the conventional model by fitting the observed data of HCP.
文摘In this paper, by using the matrix representation of the generalized quaternion algebra, we discussed solution problem for two classes of the first_degree algebraic equation of the generalized quaternion and obtained critical conditions on existence of a unique solution, infinitely many solutions or nonexistence any solution for the two classes algebraic equation.